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SUMMARY

N-methyl-D-aspartate receptors (NMDARs) are
located in neuronal cell membranes at synaptic and
extrasynaptic locations, where they are believed to
mediate distinct physiological and pathological
processes. Activation of NMDARs requires gluta-
mate and a coagonist whose nature and impact on
NMDAR physiology remain elusive. We report that
synaptic and extrasynaptic NMDARs are gated by
different endogenous coagonists, D-serine and
glycine, respectively. The regionalized availability of
the coagonists matches the preferential affinity of
synaptic NMDARs for D-serine and extrasynaptic
NMDARs for glycine. Furthermore, glycine and
D-serine inhibit NMDAR surface trafficking in a
subunit-dependent manner, which is likely to influ-
ence NMDARs subcellular location. Taking advan-
tage of this coagonist segregation, we demonstrate
that long-term potentiation and NMDA-induced
neurotoxicity rely on synaptic NMDARs only. Con-
versely, long-term depression requires both synaptic
and extrasynaptic receptors. Our observations
provide key insights into the operating mode of
NMDARs, emphasizing functional distinctions
between synaptic and extrasynaptic NMDARs in
brain physiology.
INTRODUCTION

N-methyl-D-aspartate receptors (NMDARs) are glutamate iono-

tropic receptors implicated in multiple aspects of brain physi-

ology and cognitive functions, such as learning and memory

(Bliss and Collingridge, 1993). They are also central to the path-
ogenesis of various neurological and psychiatric diseases,

including neurodegenerative disorders (Arundine and Tymianski,

2003), chronic pain (Woolf and Salter, 2000), and schizophrenia

(Lin et al., 2012). NMDARs located at synaptic and extrasynaptic

sites may constitute two functionally distinct pools of receptors.

Synaptic NMDARs are responsible for inducing the most

common forms of synaptic plasticity found in the brain, namely,

long-term potentiation (LTP) and long-term depression (LTD).

Whether specific subsets of synaptic NMDARs mediate LTP or

LTD (Liu et al., 2004; Massey et al., 2004; Morishita et al.,

2007; Berberich et al., 2005; Weitlauf et al., 2005) and whether

extrasynaptic receptors also play a role in these processes

(Rusakov et al., 2004) is controversial. Extrasynaptic NMDARs

contribute to neuronal synchronization (Angulo et al., 2004; Fellin

et al., 2004), but have mostly been implicated in neurodegen-

erative disorders, including stroke and Huntington’s and

Alzheimer’s diseases (Arundine and Tymianski, 2003; Milner-

wood et al., 2010; Bordji et al., 2010). Recent evidence also

suggests that synaptic NMDARs are neuroprotective, whereas

extrasynaptic receptors promote cell death (Hardingham and

Bading, 2010). Thereby, NMDARs are crucial players in both

physiological and pathophysiological processes, and as such,

they have been studied extensively, generating massive clinical

interest as potential therapeutic targets (Hardingham and Bad-

ing, 2010; Tsai et al., 2004).

Yet, basic information is still lacking, particularly regarding the

endogenous gating of their glycine-binding site. To be activated,

NMDARs require the binding of glutamate and of another agonist

whose identity and control over NMDAR-mediated functions

in situ is still unclear. Glycine was first proposed to serve as

a coagonist of NMDARs (Forsythe et al., 1988, Johnson and

Ascher, 1987; Kleckner and Dingledine, 1988), but evidence for

its endogenous implication has only been obtained in regions

where it is particularly abundant, such as the spinal cord (Ahmadi

et al., 2003), the retina (Kalbaugh et al., 2009), and the nucleus

tractus solitarius (Panatier et al., 2006). Another amino acid,

D-serine, was reported to serve as an endogenous ligand at the
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Figure 1. Glycine Is Not an Endogenous Coagonist of NMDARs at CA3-CA1 Synapses
(A) (Top) NMDAR-fEPSPs recorded at room temperature, under different experimental conditions. RgDAAO inhibited these responses (42.4% ± 4.1% of control,

n = 27, p < 10�5; top-left trace), an effect that could be rescued with D-serine (101.9% ± 8.9%, n = 7 out of 18 experiments). BsGO had no effect either under

control conditions (101.3% ± 3.1%, n = 20, p = 0.674, top-right trace) or in RgDAAO-treated slices (94.7% ± 2.2%, n = 8, p = 0.104, bottom-left trace). In glycine

(0.1–0.5 mM), RgDAAO no longer affected NMDAR-fEPSPs (97.2% ± 2.2%, n = 6, p = 0.413), while subsequent application of BsGO induced a pronounced

inhibition of these responses (50.6% ± 14.4% of control, n = 6, p < 0.01, bottom-right traces). (Bottom) Bar graphs summarizing the experiments depicted above.

Error bars showmean ± SEM. *p < 0.05; **p < 0.01; ***p < 0.001; arrows represent stimulation artifact that was removed for clarity reasons. Regarding specificity

and efficacy of RgDAAO and BsGO in our experimental conditions, see Figures S1, S2, and S3.

(B) (Top) Examples of NMDAR-fEPSPs recorded as in A at 36�C. Application of RgDAAO still produced a strong inhibition (68.6% ± 4.0% of control, n = 12,

p < 0.001; top trace) and BsGOwas still without effect (95.7% ± 3.0%, n = 14, p = 0.113) even in RgDAAO-treated slices (97.4% ± 2.1%, n = 5, p = 0.171, bottom

trace). (Bottom) Summarizing bar graphs.
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so-called glycine-binding site of NMDAR at several CNS

synapses, such as the hippocampus (Henneberger et al., 2010;

Mothet et al., 2000; Schell et al., 1995; Yang et al., 2003) the

hypothalamus (Panatier et al., 2006), the cortex (Fossat et al.,

2012), the retina (Stevens et al., 2010), and the spinal cord

(Wake et al., 2001). Therefore, the relative contribution of endog-

enous glycine and D-serine for synaptic NMDAR activity remains

to be established. Moreover, the nature of the endogenous coa-

gonist that gates extrasynaptic NMDARs is unknown.

To assess the respective contributions of endogenous glycine

and D-serine at synaptic and extrasynaptic NMDARs, we per-

formed electrophysiological recordings in the CA1 region of the

hippocampus where NMDARs and NMDAR-mediated pro-

cesses have been extensively studied in the context of learning,

memory, and neurodegeneration. Using specific enzymes that

degrade either D-serine or glycine, we demonstrate that D-serine

is the coagonist at synaptic NMDARs, whereas glycine is the

coagonist at extrasynaptic NMDARs. We show that such func-

tional compartmentalization arises from glycine and D-serine

availability that matches the preferential affinity of NMDARs for

these two coagonists. In addition, glycine and D-serine differen-

tially impact NMDAR surface diffusion, which is likely to

contribute to this segregation. We then provide evidence that

LTP and NMDA-mediated excitotoxicity depend on synaptic

NMDARs, whereas LTD requires both synaptic and extrasynap-

tic receptors.

RESULTS

D-Serine Is an Endogenous Coagonist of Synaptic
NMDARs
To identify the endogenous coagonist(s) of NMDARs at CA3-

CA1 synapses, we first monitored the influence of D-amino

acid oxidase (RgDAAO; Molla et al., 1998, 2000; Pollegioni

et al., 1992), on NMDAR-mediated field excitatory post-synaptic

potentials (NMDAR-fEPSPs; Figure S1A available online). Degra-

dation of extracellular D-serine by RgDAAO (0.2 U/ml) produced

a consistent reduction of NMDAR-fEPSP slope (Figures 1A and

S1B) at room temperature. At 36�C, an inhibitory action of

RgDAAO was observed as well (Figure 1B), although its magni-

tude was smaller consistent with the compromised stability of

the enzyme at such temperatures (Pollegioni et al., 1992; see

Experimental Procedures). No inhibition was observed with an

inactive variant of the enzyme,DDAAO (Molla et al., 2000; Exper-

imental Procedures), ruling out side effects of RgDAAO vehicle

solution and a direct deleterious interaction between the enzyme

and NMDARs (Figure S1C). RgDAAO application did not affect
(C) (Top) Examples of NMDAR-fEPSPs challenged with Ro25-6981 or zinc. While R

zinc induced a dramatic reduction of NMDAR-fEPSPs (44.8% ± 2.0% of control

(D) (Top) Examples of NMDAR-fEPSPs obtained from P25-old animals. While Ro2

p < 0.05; top trace) BsGO produced no significant effect (97.8% ± 2.3%, n = 6,

(E and F) (Top) in the presence of the GlyT1 inhibitor ALX (1 mM), NMDAR-fEPSPs

p < 0.01, top trace) and physiological temperature (80.2% ± 2.3%, n = 9, p < 0

affected the field potentials (RT: 91.7% ± 2.6%, n = 10, p < 0.05; 36�C: 96.4% ± 2.

RgDAAO strongly reduced NMDAR-fEPSPs (RT: 53.1% ± 6.6%, n = 10, p < 0.01

experiments depicted above.

See also Figures S1, S2, and S3.
the paired-pulse ratio or the afferent fiber volley (Figure S1D),

arguing against an effect on glutamate release probability

and axonal excitability. Consistently, AMPA receptor-mediated

transmission was not affected by RgDAAO either (Figure S1D),

demonstrating that RgDAAO inhibitory effect was confined to

NMDARs. Because D-serine degradation is accompanied by

the production of byproducts such as NH4
+ and H2O2 that could

impair NMDAR function, in particular through local disturbance

of pH, we checkedwhether exogenous applications of coagonist

were sufficient to rescue NMDAR-fEPSPs. Under continuous

perfusion of the enzyme, D-serine (0.1–0.5 mM) could reverse

the inhibition of NMDAR-fEPSPs mediated by RgDAAO (Fig-

ure 1A). Alternatively, incubating slices in 0.1–0.5 mM glycine

before applying RgDAAO prevented the inhibitory action of the

scavenger (Figure 1A). These experiments demonstrate that

the inhibitory action of RgDAAO was a direct result of a

decreased occupancy of the NMDAR glycine-binding site

because of D-serine degradation. Altogether, these findings

confirm previous observations that identified D-serine as a major

endogenous coagonist of synaptic NMDARs (Henneberger et al.,

2010; Mothet et al., 2000; Schell et al., 1995; Yang et al., 2003).

Glycine Is Not an Endogenous Coagonist of Synaptic
NMDARs
Although the persistence of NMDAR-fEPSPs in the presence

of RgDAAO can be explained by incomplete degradation of

D-serine (see Experimental Procedures), another explanation

could be that glycine acts as an endogenous coagonist at

some synaptic NMDARs. Therefore, we assessed the contribu-

tion of endogenous glycine in gating NMDARs at CA3-CA1

synapses by using BsGO (0.2 U/ml) that selectively degrades

free extracellular glycine (Job et al., 2002). Unlike RgDAAO,

BsGO did not affect the slope of NMDAR-fEPSPs over several

hours of perfusion either at room (Figure 1A) or physiological

temperature (Figure 1B), suggesting that endogenous glycine

might not serve as a coagonist of synaptic NMDARs. The lack

of inhibition by BsGO could simply reflect the fact that endoge-

nous D-serine, which is left intact in these experiments, masks

the effect of degrading glycine. We therefore repeated these

experiments on slices that had been treated with RgDAAO

beforehand, to lower endogenous D-serine levels. Under these

conditions, BsGO applications still had no effect on NMDAR-

fEPSPs both at room and physiological temperature (Figures

1A and 1B).

To rule out the possibility that BsGO does not efficiently

scavenge glycine in our experimental conditions, we carried

out several control experiments. First, when 0.1–0.5 mM glycine
o25-6981 had no detectable effect (98.6% ± 1.5%, n = 8, p = 0.168; top trace),

, n = 8, p < 10�4; bottom trace). (Bottom) Summarizing bar graphs.

5-6981 inhibited synaptic NMDAR responses (80.8% ± 5.9% of control, n = 6,

p = 0.334; bottom trace). (Bottom) Summarizing bar graphs.

were slightly inhibited by BsGO both at room (86.8% ± 2.3% of control, n = 8,

.01). Interestingly, applications of RgDAAO in the presence of ALX no longer

1%, n = 7, p = 0.101, bottom traces). Subsequent application ofBsGO on top of

; 36�C: 70.9% ± 2.5%, n = 7, p < 0.001). (Bottom) Bar graphs summarizing the

Cell 150, 633–646, August 3, 2012 ª2012 Elsevier Inc. 635



was added to the bath, a significant increase of NMDAR-fEPSPs

slope was observed (Figure S2), as expected if the NMDAR

glycine site was not fully occupied. Subsequent applications of

BsGO reduced the slope of NMDAR-fEPSPs back to its initial

value (Figure S2), suggesting an efficient degradation of exoge-

nous glycine. Second, in the experiments in which exogenously

applied glycine prevented the inhibitory action of RgDAAO,

addition of BsGO on top of RgDAAO significantly impaired

NMDAR-fEPSPs (Figure 1A). Together these data indicate that

BsGO efficiently degrades glycine in acute hippocampal slices

and its inability to inhibit NMDAR-fEPSPs supports the conclu-

sion that endogenous glycine is not a coagonist of NMDARs at

CA3-CA1 synapses of adult rats (Figure S3).

Synaptic NMDARs’ Subunit Composition Favors
D-Serine over Glycine
That D-serine but not glycine gates synaptic NMDARs could be

the consequence of a preferential affinity of synaptic NMDARs

for D-serine. Indeed, the GluN2-subunit composition of NMDARs

is known to impact their affinity for D-serine versus glycine (Mat-

sui et al., 1995;Madry et al., 2007; Priestley et al., 1995). GluN2B-

heterodimers subtype of NMDARs (GluN2B-NMDARs) bind

glycine with a 10-fold better affinity than do GluN2A-NMDARs,

and they exhibit a stronger affinity for glycine than for D-serine

(EC50 �0.057 versus 0.15 mM, respectively) (Priestley et al.,

1995; Madry et al., 2007). On the contrary, GluN2A-NMDARs

exhibit a slightly stronger affinity for D-serine over glycine

(EC50 �0.22 versus 0.53 mM respectively, Priestley et al., 1995;

Matsui et al., 1995; but see Wafford et al., 1995). Thus, the pres-

ence of GluN2A-NMDARs at synapses would favor gating by

D-serine over glycine. We characterized the composition of

NMDARs at CA3-CA1 synapses in slices obtained from adult

rats and found that the GluN2B-NMDARs antagonist Ro25-

6981 (2 mM) did not affect NMDAR-fEPSPs slope (Figure 1C).

Conversely, 250 nM of free zinc (Experimental Procedures), a

highly specific allosteric inhibitor of GluN2A-NMDARs that acts

as a partial antagonist (Paoletti et al., 1997; Paoletti and Neyton,

2007), strongly reduced synaptic NMDAR-fEPSPs (Figure 1C).

These results indicate that synaptic receptors are predominantly

composed of GluN2A-NMDARs.

While favoring a role for D-serine over glycine, the differences

in affinity of the NMDAR-subtypes for either coagonist are

unlikely to allow full discrimination between D-serine and glycine.

We further tested this possibility by performing experiments in

hippocampal slices obtained from younger animals (P25) at an

age where GluN2B-NMDARs are known to be present at CA3-

CA1 synapses (Kirson and Yaari, 1996; Morishita et al., 2007;

Harris and Pettit, 2007). As expected, NMDAR-fEPSPs were

significantly inhibited by Ro25-6981 at P25 (Figure 1D), but no

effect of BsGO on NMDAR-fEPSPs could be detected (Fig-

ure 1D), suggesting that even when GluN2B-NMDARs partici-

pate in the synaptic responses, endogenous glycine does not

gate these receptors.

Glycine Transporters Prevent Glycine Access
to Synaptic NMDARs
Clearance of glycine from the synaptic space may explain why

endogenous glycine does not gate NMDARs at CA3-CA1
636 Cell 150, 633–646, August 3, 2012 ª2012 Elsevier Inc.
synapses. Glycine transporters, predominantly GlyT1 (Zafra

et al., 1995; Cubelos et al., 2005), are known to modulate glycine

concentrations in the hippocampus (Berger et al., 1998;

Bergeron et al., 1998). To test whether GlyT1 lowers synaptic

glycine levels to ineffective concentrations, we inhibited the

activity of these transporters with the specific blocker ALX

5407 (ALX, 1 mM) (Atkinson et al., 2001). ApplyingBsGOon slices

pre-incubated with ALX led to a small but consistent decrease of

the slope of NMDAR-fEPSPs both at room temperature (RT) and

36�C (Figures 1E). In these experiments, the presence of endog-

enous D-serine is likely to compete with glycine, thereby mini-

mizing the effect of BsGO on synaptic NMDARs. Accordingly,

in the presence of ALX, RgDAAO inhibitory action appeared

largely compromised (Figure 1E) whereas subsequent addition

of BsGO yielded a larger reduction of NMDAR-fEPSPs (Fig-

ure 1E). These results confirm that endogenous glycine would

contribute to NMDARs activity in the absence of active uptake

(Berger et al., 1998; Bergeron et al., 1998) and further demon-

strate that BsGO efficiently degrades endogenous glycine.

More importantly, they point to an active process maintaining

glycine levels within the synaptic cleft at values that do not signif-

icantly impact NMDAR activity.

Glycine and D-Serine Degradation Both Reduce
NMDA-Evoked Responses
NMDARs are present not only at synaptic but also at extrasynap-

tic sites. According to the literature, the levels of glycine in the

extracellular space (2–10 mM) should be sufficient to act on

NMDARs located outside the synapses (Yamamoto et al.,

2010, Horio et al., 2011). We thus determined the contribution

of D-serine and glycine at gating extrasynaptic NMDARs. To

this end, we switched to whole-cell patch clamp to record

from CA1 pyramidal neurons held at +40 mV while evoking

responses with local puff-applications of NMDA (1 mM,

20–200 ms, Figure 2A). Such agonist applications yielded long-

lasting outward currents which resulted from the activation of

both synaptic and extrasynaptic NMDARs (Harris and Pettit,

2007; Mothet et al., 2000). These agonist-evoked currents

were stable for roughly 35 min and blocked by D-AP5 (Figure 2A).

Consistent with its effect on synaptic receptors, RgDAAO

induced a reliable inhibition of NMDA-evoked current amplitude

that could be reversed with exogenous glycine (Figure 2A).

BsGO also caused a significant reduction of NMDA-evoked

excitatory postsynaptic currents (EPSCs) at room and physio-

logical temperatures, which was rescued with exogenous

D-serine. Because BsGO did not affect synaptic NMDARs, these

results suggest that a significant number of extrasynaptic

NMDARs on CA1 neurons are gated by ambient glycine. Accord-

ingly, we found that RgDAAO and BsGO had an additive effect

when applied together (Figure 2A), as expected if the two

enzymes were affecting two distinct populations of receptors

by degrading either glycine or D-serine.

Glycine, but Not D-Serine, Controls NMDAR-Mediated
Tonic Current
To test directly the role of endogenous glycine at gating extrasy-

naptic NMDARs, we attempted to study a process purely medi-

ated by these receptors. It was previously reported in CA1



5s

100 pA

D-AP5

NMDA

after 35 min

NMDA

RgDAAO + BsGO

100 pA

NMDA

RgDAAO

100 pA

RgDAAO + glycine

100 pA

NMDA

BsGO

BsGO + D-serine

D-AP5 BsGORgDAAO RgDAAO 
+ BsGO

control 
35min

N
M

D
A

-e
vo

ke
d

 c
u

rr
en

t 
am

p
lit

u
d

e 
 (%

)

100

20

0

120

80

40

n = 7 n = 13n = 11 n = 7

n = 3n = 5

+ gly
+ D-ser

***

******

***

n = 10

BsGO
at 36°C

n = 6

n = 3

+ D-ser

***

60

A

20

0N
M

D
A

R-
m

ed
ia

te
d

 t
o

n
ic

 c
u

rr
en

t 
(-

p
A

)

control RgDAAO BsGORo25-6981

n = 22 n = 14 n = 20 n = 20

30

10

Zinc

n = 11

5

15

25

B
D-AP5

control

60 s

40 pA

in BsGO

in RgDAAO

D-AP5

in zinc

@ +40 mV

in Ro25-6981

**

***

Figure 2. BsGO Acts on Extrasynaptic NMDARs
(A) (Left) Example of responses evoked by local applications of NMDA at +40mV, which were stable for 35–40 min (97.5% ± 2.4% of control, n = 7, p = 0.264) and

sensitive to D-AP5 (4.1% ± 0.7%, n = 10, p < 10�5, top-left traces). These responses were significantly inhibited with BsGO (RT: 77.5% ± 2.0%, n = 13, p < 10�4,

bottom-left trace; 36�C: 81.0% ± 2.5%, n = 6, p < 0.01) and RgDAAO (72.2% ± 3.2% of control, n = 11, p < 10�4; top-right trace). Both inhibitory effects were

reversed by adding either D-serine (102.6% ± 9.8%, n = 3 at RT and 108.8% ± 1.2%, n = 3 at 36�C) or glycine (113.8% ± 4.0%, n = 5) in the bathing solution.

Coapplication of BsGO and RgDAAO led to an additive inhibition of NMDA-evoked responses (58.6% ± 3.4%, n = 7, p < 10�4, bottom-right trace). (Right)

Summarizing bar graphs (mean ± SEM).

(B) (Left) Examples of the shift in holding current observed at +40 mV in response to D-AP5 (26.8 ± 3.1 pA, n = 22), revealing the tonic activation of extrasynaptic

NMDARs at rest. This shift was strongly reduced in slices incubated with either Ro25-6981 (15.7 ± 3.0 pA, n = 14, p < 0.01) or BsGO (12.1 ± 2.9 pA, n = 20,

p < 0.001), whereas it was not affected by zinc (23.2 ± 2.4 pA, n = 11, p = 0.440) or RgDAAO (23.8 ± 4.0 pA, n = 20, p = 0.382). (Right) Summarizing bar graphs

(mean ± SEM).
pyramidal neurons that ambient glutamate generates a tonic

NMDAR-mediated current (Sah et al., 1989) carried by extrasy-

naptic receptors (Le Meur et al., 2007). In agreement with these

studies, we found that 50 mM D-AP5 caused a 26.8 ± 3.1 pA

inward current in CA1 neurons held at +40 mV (Figure 2B). Inter-

estingly, the magnitude of this current was not significantly

affected by zinc, whereas it was reduced in presence of Ro25-

6981 (Figure 2B). Given the effects of zinc and Ro25-6981 on

synaptic receptors (Figure 1C), these results are consistent

with the involvement of extrasynaptic NMDARs (Le Meur et al.,

2007). We then tested whether such tonic NMDAR activity was

gated by D-serine or glycine. Lowering D-serine levels with

RgDAAO did not significantly affect the magnitude of the tonic

current (Figure 2B) whereas it was reduced by 54.8% in BsGO-
slices. These results indicate that glycine, but not D-serine,

serves as an endogenous coagonist of extrasynaptic NMDARs.

However, because those receptors are tonically activated by

ambient glutamate, it is very unlikely that they contributed to

the extrasynaptic responses generated by the local applications

of NMDA (Figure 2A).

Preferential Action of Glycine on GluN2B-NMDARs
To confirm the hypothesis that glycine serves as an endogenous

coagonist at extrasynaptic receptors recruited during NMDA-

puff applications, we took advantage of the difference in subunit

composition between synaptic and extrasynaptic NMDARs that

prevails in our experimental conditions. As already shown for

NMDAR-fEPSPs, challenging NMDAR-EPSCs with Ro25-6981
Cell 150, 633–646, August 3, 2012 ª2012 Elsevier Inc. 637
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Figure 3. Glycine and D-Serine Serve as Endogenous Coagonist at Extrasynaptic GluN2B- and Synaptic GluN2A-NMDARs, Respectively

(A) Typical traces illustrating the inhibitory effect of Ro25-6981 on NMDA-evoked responses at +40 mV (21.5% ± 2.7%, n = 15, p < 0.001, left trace). This

inhibition was enhanced in RgDAAO-treated (36.6% ± 3.1%, n = 16, p < 0.01, middle trace) and occluded in BsGO-treated (6.7% ± 3.1%, n = 13, p < 0.001, right

trace) slices.

(B) Example illustrating the lack of effect of Ro25-6981 on NMDAR-mediated EPSCs (2.8% ± 3.4%, n = 12, p = 0.285) obtained at CA3-CA1 synapses, indicating

that GluN2B-NMDARs are not present at synaptic sites.

(C) Bar graphs (mean ± SEM) summarizing the experiments depicted in (A) and (B).

(D) Traces illustrating the inhibitory effect of zinc on NMDA-evoked responses under control conditions (24.2% ± 2.0%, n = 15, p < 10�5, left trace), in RgDAAO-

(11.2% ± 3.9%, n = 10, p < 0.01 versus control effect, middle trace) and in BsGO-treated (31.9% ± 3.0%, n = 10, p < 0.05, right trace) slices.

(E) Example illustrating the strong inhibitory action of zinc on NMDAR-mediated EPSCs (50.2% ± 1.9%, n = 12, p < 10�5), indicating that synaptic NMDARs are

mainly composed of GluN2A-NMDARs.

(F) Bar graphs (mean ± SEM) summarizing the experiments depicted in (D) and (E).
had no effect (Figures 3B and 3C) whereas it significantly

reduced NMDA-evoked currents (Figures 3A and 3C), in line

with the extrasynaptic location of GluN2B-NMDARs. If endoge-

nous glycine is serving as a coagonist at extrasynaptic NMDARs,

then the inhibitory effect of the GluN2B-antagonist on NMDA-

induced responses should be compromised once glycine has

been degraded. Accordingly, inhibition by Ro25-6981 was

dramatically reduced in BsGO-treated slices (Figures 3A and

3C). These data also suggest that even in the absence of glycine,

D-serine does not act as a coagonist at extrasynaptic GluN2B-

receptors. D-serine degradation should then impair the activity

of synaptic NMDARs, but leave intact the GluN2B-extrasynaptic

pool. As a consequence, the contribution of extrasynaptic

GluN2B-receptors to the initial NMDA-evoked response should

be increased under conditions where D-serine has been already

degraded. Indeed, Ro25-6981-mediated inhibition on NMDA-

evoked currents was enhanced in RgDAAO-treated slices

(Figures 3A and 3C). Altogether, these results suggest that

glycine, but not D-serine, is an endogenous coagonist of extrasy-

naptic GluN2B-NMDARs on CA1 pyramidal neurons.

Given the strong contribution of GluN2A-NMDARs to synaptic

(Figure 1C) but not to extrasynaptic pool (Figure 2B), we per-

formed the mirror experiment using zinc. It strongly reduced

NMDAR-EPSCs (Figures 3E and 3F) but had a modest inhibitory
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effect on NMDA-evoked responses (Figures 3D and 3F) likely re-

flecting the contribution of synaptic receptors to these currents.

Consistently, the effect of zinc was reduced in RgDAAO-treated

slices (Figures 3D and 3F), whereas it was slightly enhanced

once glycine was degraded with BsGO. Such observations are

in agreement with a role for D-serine, but not glycine, at

GluN2A-NMDARs that are mostly, if not only, synaptic.

Glycine Acts at Extrasynaptic Receptors
We attempted to isolate more specifically responses mediated

by extrasynaptic receptors during NMDA puffs, using the

activity-dependent open-channel NMDAR blocker MK-801

(Hessler et al., 1993; Rosenmund et al., 1993; Harris and Pettit,

2007, 2008). NMDAR-EPSCs and NMDA-evoked responses

were monitored from the same cell (Figure 4B). Then, NMDA

puffs were stopped and MK-801 was applied to selectively

silence synaptic NMDARs under stimulation at 0.1 Hz (Hessler

et al., 1993; Rosenmund et al., 1993). Once synaptic blockade

was maximal, a subsequent single application of NMDA was

used to monitor the remaining, extrasynaptic NMDARs-enriched

response (Harris and Pettit, 2007, 2008). This response was

36.7% ± 2.9% of the initial NMDA-evoked current amplitude

(Figures 4A and 4B). We repeated this procedure to assess the

extrasynaptic NMDAR-enriched responses at different levels of
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(A) Example of responses evoked in a CA1 neuron by synaptic stimulation (inset) and local applications of NMDA, before (black traces) and after (gray traces)

blockade of synaptic NMDARs with MK-801.

(B) Once a baseline was obtained for both synaptic and NMDA-evoked currents, MK-801 was applied (40 mM, blue area), NMDA-evoked stimulations were

stopped (puff off) and the frequency of stimulations increased to 0.1 Hz. Once the synaptic blockade was optimal (�130 stim, 25min), puff stimulation was turned

on again.

(C) Representative examples of NMDA-evoked responses under conditions in which synaptic NMDARs were only inhibited by 50% in control (left trace) or in

BsGO-treated (right trace) slices.

(D and E) same as in (A) and (B) in BsGO-treated slices.

(F) Graph summarizing the average inhibition of the NMDA-evoked responses (control: 63.3% ± 2.9%, 33.7% ± 7.3%, 12.4% ± 4.9%, 0.7% ± 7.2%; BsGO:

74.9% ± 2.3% p = 0.007 compared to blockade in control 50.6% ± 5.8%,�3.9% ± 9.6%) achieved after different degrees of synaptic-current blockade (control:

87.8% ± 1.1%, 50.9% ± 6.9%, 14.1% ± 6.3%, 0.3% ± 6.6%;BsGO: 90.1% ± 1.3%, 51.7% ± 4.9%,�2.8% ± 9.1%), in control (black dots) andBsGO (green dots)

slices. Numbers of cells are indicated. Regression equations and coefficients are displayed for control (0.698, R2 = 0.995) andBsGO condition (0.858, R2 = 0.986).

For further details, see Extended Experimental Procedures and Figure S4.
synaptic blockade, and the corresponding values were plotted

to provide a linear relationship between synaptic blockade and

inhibition of NMDA-evoked responses (Figures 4F and S4). The

slope obtained from these experiments (Figure 4F) reflected

a contribution of 69.8% of synaptic receptors to NMDA-evoked

responses, which is remarkably consistent with previous find-

ings (Harris and Pettit, 2007; Petralia et al., 2010). Accordingly,

reducing the contribution of extrasynaptic receptors to NMDA-

evoked response should shift the slope toward higher values.

When repeating this protocol in BsGO-treated slices (Figures

4C–4F and S4) the slope of the linear regression (Figure 4F) indi-

cated that the total response was derived from at least 85% of

synaptic receptors. This result strengthens our proposal that

glycine gates extrasynaptic NMDARs.

Glycine and D-Serine Have a Different Impact on
NMDARs’ Lateral Diffusion
Because the nature of the endogenous coagonist used by

synaptic and extrasynaptic NMDARs is unlikely to be dictated
by receptors’ subunit composition (see above), one possible

alternative is that the subunit composition at a given location

directly results from the coagonist availability. This could be

accounted for by a differential impact of glycine and D-serine

on surface trafficking of NMDAR-subtypes. We used the single

nanoparticle approach (Quantum Dot [QD]; Groc et al., 2007)

to investigate the effect of either coagonist on the surface

diffusion of GluN2A- or GluN2B-containing single NMDARs in

cultured hippocampal neurons. (Figures 5A and S5). In agree-

ment with the literature (Groc et al., 2006; Bard et al., 2010),

we observed that GluN2A- and GluN2B-NMDARs diffused at

the neuronal surface, and that GluN2A-NMDARs were more

stable than GluN2B-NMDARs due to their trapping at synapses

(Figure S5). Strikingly, we observed that GluN2A-NMDARs

diffusion was not affected in presence of exogenous D-serine

(30 mM, Figure 5C) but was slowed down by glycine (30 mM).

On the contrary, glycine did not affect the trafficking of

GluN2B-NMDARs, which diffused less in the presence of

D-serine. These changes in surface diffusion were mostly due
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Figure 5. D-Serine and Glycine Differentially

Regulate the Surface Trafficking of GluN2A-

and GluN2B-NMDARs

(A) Representative trajectories of surface GluN2A-

and GluN2B-NMDARs (yellow lines, 800–1000

frames, 50 ms acquisition) imaged over time using

the single Quantum Dot tracking approach at the

surface of cultured hippocampal neurons in pres-

ence of either D-serine (30 mM) or glycine (30 mM).

Enlarged trajectories are shown in the insets.

Scale bar = 4 mm, scale bar inset = 1 mm.

(B) Cumulative distributions of the instantaneous

diffusion coefficient of surface GluN2A- or

GluN2B-NMDAR in the presence of either D-serine

(GluN2A: n = 385 trajectories, GluN2B: n = 596

trajectories) or glycine (GluN2A: n = 507 trajecto-

ries, GluN2B: n = 352 trajectories). Bin size =

0.005 mm2/s.

(C) Bar graphs (mean ± SEM) summarizing the

effect of D-serine or glycine on the averaged

surface diffusion of GluN2A- and GluN2B-

NMDARs, in control (GluN2A: D-serine: 105.4% ±

16.1% of control diffusion, p = 0.804; glycine:

47.4% ± 9.0% of control, p < 0.01�4; GluN2B:

D-serine: 47.9% ± 6.0% of control, p < 0.001;

glycine: 91.8% ± 10.2% of control, p = 0.742) or

in the presence of D-AP5 (GluN2A: D-serine:

87.4% ± 2.8% of control, p = 0.744; glycine:

67.3% ± 5.3% of control, p < 10�4; GluN2B:

D-serine: 79.8% ± 8.0% of control, p < 10�4;

glycine: 101.0% ± 7.9% of control, p = 0.908).

Numbers indicate n values.

See Extended Experimental Procedures and

Figure S5 for control experiments performed with

FLAG-NMDARs.
to a change in the fraction of immobile receptors (diffusion coef-

ficient <0.005 mm2/s) rather than a change in the characteristics

of diffusion itself (Figure 5B), in line with a rapid (minute range)

coagonist-induced change in NMDAR anchoring efficacy. These

data thus demonstrate that D-serine and glycine differentially

modulate the surface behavior of GluN2A- and GluN2B-

NMDARs and that they could actively contribute to the spatial

segregation of NMDAR subtypes. Remarkably, such phenom-

enon persisted in the presence of D-AP5, a NMDAR antagonist

acting on the glutamate-binding site (Figure 5C), suggesting

that this process is mostly independent of the activity of the

receptor.

Contribution of Synaptic and Extrasynaptic NMDARs
to Synaptic Plasticity
We next took advantage of the gating of synaptic and extrasy-

naptic NMDARs by distinct endogenous coagonists to tackle

the respective role of these receptors inmediating synaptic plas-

ticity. LTP was induced at CA3-CA1 synapses using high-

frequency stimulation. This protocol yielded a long-lasting

enhancement of AMPAR-fEPSP slope (Figures 6A1 and 6C) that

was inhibited in RgDAAO-treated slices as previously reported

(Yang et al., 2003) or in the presence of zinc (Figures 6A2 and

6C). Conversely, degrading glycine with BsGO or inhibiting
640 Cell 150, 633–646, August 3, 2012 ª2012 Elsevier Inc.
GluN2B-NMDARs with Ro25-6981 did not affect LTP. These

findings indicate that synaptic, but not extrasynaptic, NMDARs

are essential for LTP induction. We next assessed the involve-

ment of those receptors in LTD induced by a low frequency stim-

ulation protocol (Figures 6B1 and 6C). As previously reported

(Zhang et al., 2008), LTD was impaired in RgDAAO-treated

slices, an effect that could be rescued with exogenous glycine

(Figures 6B1 and 6C). Interestingly, LTD was also abolished in

BsGO-treated slices and rescued with D-serine (Figures 6B2

and 6C). In agreement with these findings, both zinc and

Ro25-6981 abolished LTD (Figures 6B3 and 6C). These results

establish that both synaptic and extrasynaptic NMDARs are

required for LTD induction.

Contribution of Synaptic and Extrasynaptic NMDARs
to Neurotoxicity
We finally tested the respective contribution of synaptic and

extrasynaptic NMDARs to neurotoxicity (Katsuki et al., 2004;

Léveillé et al., 2008; Shleper et al., 2005). To this end, acute

hippocampal slices were exposed to 50 mM NMDA for 30 min

before assessing neuronal death by Nissl staining in the pyra-

midal layer of the CA1 area (Figure 7A). NMDA applications

reduced cell viability to 64.0% ± 2.8% of control values, an effect

prevented by D-AP5 (Figure 7B). We observed that RgDAAO had
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(A1) LTP (139.6% ± 5.0% of baseline, n = 9, p < 10�4, black dots) induced by high frequency stimulation (HFS) was significantly impaired in RgDAAO-

(117.8% ± 2.7%, n = 10, p < 0.01, red dots) but not in BsGO-treated slices (140.0% ± 4.7%, n = 9, p = 0.953, green dots). Insets represent average fEPSPs

obtained during baseline (black trace) and 40–50min after induction of synaptic plasticity (gray trace), here and throughout the figure. (A2) Same experiments as in

(A1) conducted in the presence of zinc (111.3% ± 1.4%, n = 8, p < 0.001) or Ro25-6981 (135.5% ± 2.4%, n = 8, p = 0.487).

(B) LTD (79.5% ± 1.9% of baseline, n = 9, p < 10�5, black dots) induced by low frequency stimulation (LFS) was impaired in RgDAAO- (B1: 91.3% ± 3.5%, n = 8,

p < 0.01 versus control, red dots) andBsGO-treated slices (B2: 99.6% ± 4.4%, n = 7, p = 0.902, p < 0.001, green dots), effects that were prevented in the presence

of glycine (81.5% ± 1.5%, n = 6, p = 0.967, p < 0.05 versusRgDAAO) and D-serine (80.3% ± 2.4%, n = 6, p = 0.766, p < 0.01 versusBsGO), respectively (gray dots).

(B3) LTDwas abolished in the presence of zinc or Ro25-6981 (94.6% ± 3.8%, n = 9, p = 0.199, p < 0.01, and 95.8% ± 4.4%, n = 6, p = 0.707, p < 0.01, respectively).

(C) Bar graphs (mean ± SEM) summarizing LTP (left) and LTD (right) magnitudes in different experimental conditions. Statistical significance is assessed

compared to control condition.
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Figure 7. NMDA-Induced Neurotoxicity Is Mediated by Synaptic,
but Not Extrasynaptic, NMDARs

(A) Representative images illustrating Nissl staining of a hippocampal slice

(top left) to reveal healthy nuclei, and of high magnification images obtained

from the stratum pyramidale of the CA1 region in control condition or in the

presence of NMDAwith or without D-AP5, RgDAAO, BsGO, Ro25-6981 or zinc

(other panels). Scale bars: black 400 mm, white 40 mm.

(B) Bar graphs (mean ± SEM) summarizing the density of healthy CA1

pyramidal neurons in the different conditions. NMDA: 64.0% ± 2.8% of

control, p < 0.001; D-AP5: 97.3% ± 4.5%, p > 0.05; RgDAAO: 86.0% ± 7.1%,

p < 0.001; BsGO: 69.6% ± 6.4%, p > 0.05; Zinc: 89.3% ± 3.3%, p < 0.001;

Ro25-6981: 71.2% ± 3.7%, p > 0.05.

See also Figure S6.
a strong protective effect (Figure 7B) as already reported in brain

slices (Shleper et al., 2005; Katsuki et al., 2004) or suggested by

in vivo experiments (Inoue et al., 2008; Mustafa et al., 2010).

Conversely, excitotoxicity was not significantly inhibited by

BsGO. In agreement with these results, zinc but not Ro25-

6981 had a significant neuroprotective action. These data indi-

cate that NMDARs located at synaptic rather than extrasynaptic

sites mediate the neurotoxic effect of NMDA on CA1 pyramidal

neurons in our experimental conditions.

DISCUSSION

We provide evidence that synaptic and extrasynaptic NMDARs

located on CA1 pyramidal cells are gated by distinct endoge-

nous coagonists. Whereas D-serine is the coagonist at synaptic

receptors, glycine acts at extrasynaptic NMDARs. Furthermore,

we provide insights into the roles of synaptic and extrasynaptic

NMDARs in synaptic plasticity and in excitotoxicity.

The widely accepted idea that glycine is the coagonist of

NMDARs was mainly based on the demonstration that exoge-

nous glycine potentiates NMDAR-mediated responses (Johnson

and Ascher, 1987; Kleckner and Dingledine, 1988; Forsythe
642 Cell 150, 633–646, August 3, 2012 ª2012 Elsevier Inc.
et al., 1988; Berger et al., 1998; Bergeron et al., 1998; Tsai

et al., 2004). While these data indicated that increasing ambient

glycine concentrations was sufficient to enhance NMDAR

activity, they did not demonstrate that endogenous glycine

contributed to NMDARs activity under basal conditions. Further-

more, this idea was significantly challenged during the last

decade by reports showing that reducing D-serine levels strongly

impaired NMDAR-mediated processes in many structures,

including in the CA1 region of the hippocampus (Basu et al.,

2009; Henneberger et al., 2010; Mothet et al., 2000; Yang

et al., 2003). Here, we show that directly reducing glycine levels

with BsGO did not affect synaptic NMDAR activity, even under

conditions where D-serine was depleted, demonstrating that

glycine does not serve as an endogenous coagonist at these

receptors.

GluN2A-NMDARs, which have a better affinity for D-serine

than for glycine (Matsui et al., 1995), appear to compose

70%–75% of the NMDAR population at CA3-CA1 synapses in

the adult rat. In contrast, GluN2B-NMDARs that are more sensi-

tive to glycine were not detected, suggesting that the 20%–25%

remaining synaptic NMDARs might be GluN2A-GluN2B trihe-

teromers. This profile agrees with previous studies (Harris and

Pettit, 2007; Kirson and Yaari, 1996; Stocca and Vicini, 1998;

Tovar and Westbrook, 1999) and indicates that NMDARs at

CA3-CA1 synapses in adult rats are well suited to disregard

low levels of glycine while efficiently detecting D-serine. Con-

comitantly, our results demonstrate that glycine transporters

actively maintain glycine concentrations within the synaptic cleft

at levels too low to coagonize NMDARs, arguing against

previous conclusions that these transporters were tuning glycine

levels within the cleft at concentrations enabling NMDARs acti-

vation (Berger et al., 1998; Bergeron et al., 1998).

One of the important observations of our study is that glycine,

but not D-serine, gates NMDARs located at extrasynaptic sites.

These receptors which contain GluN2B-subunits (Angulo et al.,

2004; Fellin et al., 2004, Köhr, 2006) were largely silenced by

BsGO but not by RgDAAO, indicating that endogenous glycine

controls the activity of extrasynaptic NMDARs that are activated

tonically by ambient glutamate, as well as those that can be

recruited phasically by NMDA applications. Conversely, D-serine

did not significantly contribute to these responses, even when

glycine was depleted, confirming that the action of D-serine is

most likely restricted to the synaptic cleft. Together, our results

suggest that the nature of the endogenous coagonist gating

NMDARs in and outside the synapses is dictated by D-serine

and glycine availability at those locations. This is paralleled by

differences in GluN2-subunit composition that confer preferen-

tial affinities to synaptic and extrasynaptic NMDARs for the

two coagonists. However, GluN2 subunits content does not

seem to account for the nature of the local endogenous NMDAR

coagonist. Indeed, our recordings obtained in the CA1 of young

rats, in agreement with previous findings obtained at other

central synapses (Panatier et al., 2006; Fossat et al., 2012),

show that endogenous glycine does not gate synaptic receptors

even though they contain some GluN2B-NMDARs. Another

explanation could be that the presence of D-serine within the

synapse and glycine outside the synapse influences the subunit

composition of NMDARs at these locations. This is supported



by lateral diffusion experiments showing that glycine strongly

and rapidly inhibits the mobility of GluN2A-NMDARs, whereas

D-serine preferentially slows down lateral diffusion of GluN2B-

NMDARs. Unexpectedly, we found this effect to be independent

of the activity of NMDARs, meaning that the coagonist site of

GluN2A- and GluN2B-NMDARs distinguishes glycine from

D-serine and directly impacts the lateral mobility and/or recycling

of the receptors (Nong et al., 2003). This could occur through

conformational changes of the receptor, impacting the interac-

tion with extracellular and/or intracellular partners. Because

these interactions shape the surface dynamics and distribution

of NMDARs, it is likely that the sole binding of D-serine on

GluN2B-NMDARs and glycine on GluN2A-NMDARs could

prevent their diffusion in and out of synapses, respectively,

leading to a confinement of GluN2A-NMDARs at synapses and

an enrichment of GluN2B-NMDARs at extrasynaptic location.

We thus propose that in the hippocampus coagonists regionali-

zation actively contributes to segregate NMDARs at specific

locations and delineates distinct functional pools of surface

NMDAR subtypes with their associated intracellular pathways

(Figure S6).

Degrading glycine or D-serine was used to assess the role of

these receptors in different cellular processes. We provide

evidence that LTP is mediated by synaptic NMDARs while extra-

synaptic NMDARs do not contribute to this form of plasticity.

This indicates that extrasynaptic NMDARs are not recruited by

glutamate spillover and/or that the intracellular pathway acti-

vated by synaptic receptors prevails over that recruited by extra-

synaptic NMDARs, during LTP protocol. Conversely, both

synaptic and extrasynaptic NMDARs have to be activated to

induce LTD. These results, that were confirmed by blocking

GluN2A- and GluN2B-NMDARs, add to the debate regarding

the specific role of GluN2A and GluN2B-NMDARs in mediating

LTP and LTD, respectively (Ge et al., 2010; Liu et al., 2004;

Massey et al., 2004; Zhao and Constantine-Paton, 2007; but

see Morishita et al., 2007; Berberich et al., 2005). Our data

indicate that the location of NMDARs, rather than subunit-

composition, might be the relevant parameter for their specific

involvement in these processes, as proposed earlier (Rusakov

et al., 2004).

We also found that silencing synaptic NMDARs offers

neuroprotection against NMDA-induced excitotoxicity. More

surprisingly, inhibiting extrasynaptic NMDARs did not have any

protective effect, arguing against a role for these receptors in

neurotoxicity. These findings confirm previous reports about

the role of D-serine in mediating cell death in slices (Shleper

et al., 2005; Katsuki et al., 2004) and in vivo (Inoue et al., 2008;

Mustafa et al., 2010). They are, however, in strong disagreement

with those obtained in cultured neurons (Hardingham et al.,

2002; Hardingham and Bading, 2003; Léveillé et al., 2008)

reporting a preferential role for extrasynaptic NMDARs in excito-

toxicity. Although our results do not rule out a possible role for

extrasynaptic NMDARs in other excitotoxic conditions, such as

hypoxia or long-lasting glutamate applications, they show that

cell death can result from the sole activation of synaptic

NMDARs.

Changes in glycine concentrations in the extracellular space

and of D-serine levels within the synapse are likely to obey
completely different rules and dynamics. Glial cells, through their

supply of D-serine to synapses (Henneberger et al., 2010) and

removal of glycine from the cleft, appear to be key controller of

synaptic NMDAR functions. Conversely, they may provide gluta-

mate to extrasynaptic NMDARs (Angulo et al., 2004; Fellin et al.,

2004; Le Meur et al., 2007) that are coagonized by ambient

glycine. Such disparities in the nature and supply of endogenous

agonists and coagonists, on top of the differential impact of

coagonists on NMDARs subtypes mobility, is likely to be of para-

mount importance for the activity of synaptic and extrasynaptic

NMDARs and, consequently, for the different physiological and

pathophysiological processes in which these receptors are

involved.

EXPERIMENTAL PROCEDURES

Slice Preparation

Experiments were carried out on acute hippocampal slices (300 mm) obtained

from adult Wistar rats (2–3months old) as described in Extended Experimental

Procedures. Electrophysiological experiments were performed in the pres-

ence of 50 mM picrotoxin and 10 mM strychnine. NMDAR-mediated responses

were isolated with 10 mM NBQX to block AMPA/Kainate receptors. All exper-

iments were conducted with respect to European and French directives on

animal experimentation (authorization no. 33 0004).

Field Recordings

Schaffer collaterals fibers were electrically stimulated at 0.05 Hz and evoked

fEPSPs were recorded using a glass electrodes placed in the stratum radia-

tum. NMDAR-mediated fEPSPs were studied in low Mg2+ (0.2 mM). LTP

was induced using 1 s trains of 100 Hz stimulation repeated three times at

20 s intervals. LTD was induced with a low frequency stimulation protocol

(15 min at 1 Hz).

Patch-Clamp Recordings

Pyramidal CA1 neurons were identified visually using infrared DIC microscopy

(Olympus BX50). Patch-clamp recording pipettes (2–4 MU) were filled with

(in mM): 150 caesium methane-sulfonate; 1.3 MgCl2; 1 EGTA; 10 HEPES;

0.1 CaCl2 (adjusted to pH �7.2 with CsOH, 290–296 mOsm.kg�1). Access

resistance and holding current were monitored throughout the experiment.

For NMDA puffs, a glass pipette containing 1 mM NMDA diluted with the

bathing solution was connected to a picospritzer air-pressured system and

placed in the stratum radiatum at a distance of �200 mm from the cell soma.

Synaptic NMDARs were defined as those recruited during afferent stimulation

at low frequency (<0.1 Hz), and extrasynaptic NMDARs as those not activated

during such stimulation.

Data Analysis

The data were recorded with a Multiclamp 700A amplifier (Axon Instruments,

Inc.), sampled at 20 kHz, filtered at 2 kHz, and analyzed using pClamp9

software (Axon Instruments, Inc.). Average EPSCs and fEPSPs traces

were obtained from at least 10 min of stable recordings. Data, reported as

mean ± SEM, were compared using paired or unpaired Student’s t test. Signif-

icance was assessed at p < 0.05. Symbols used are *p < 0.05; **p < 0.01;

***p < 0.001 throughout the manuscript.

Single Quantum Dot Tracking

Hippocampal cultures, containing neurons and glial cells, were prepared

from E18 rat embryos and grown on glass coverslips as previously described

(Bard et al., 2010). Imaging sessions were performed on hippocampal 8–10

div neurons in glutamate- and serum-free aSCF. Quantum Dot (QD) labeling

and microscopy was performed as previously described in Bard et al.

(2010). A recording session typically lasted 60 s. The instantaneous diffusion

coefficient was calculated for each trajectory, from linear fits of the first

four points of the mean-square-displacement versus time function using

MSD(t) = < r2 > (t) = 4Dt.
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Neurotoxicity Experiments

Neurotoxicity was performed and assessed as described by Katsuki et al.

(2004) with minor modifications. Briefly, slices similar to those used for electro-

physiological recordings were treated with NMDA (50 mM) for 30min, fixed and

then cut to 30 mm thick sections before mounting onto glass and exposed to

Cresyl violet (10 min) for Nissl staining. Positively stained cell bodies in an

area of 54.5 3 54.5 mm2 within the CA1 region of individual slices were

counted.

Enzymes

Recombinant wild-type Rhodotorula gracilis D-amino acid oxidase (RgDAAO,

EC 1.4.3.3) was overexpressed in E. coli cells and purified as reported

earlier (Molla et al., 1998). An inactive form of RgDAAO (DDAAO) that

does not dehydrogenate D-amino acids was generated by substitution of

Arg285 with an alanine (Molla et al., 2000). Recombinant wild-type Bacillus

subtilis glycine oxidase (BsGO, EC 1.4.3.19) was overexpressed in E. coli cells

as well (Job et al., 2002). The final RgDAAO and BsGO preparations had

a specific activity of �75 U/mg protein on D-serine as substrate and

1.1 U/mg protein on glycine as substrate, respectively. The DDAAO specific

activity was�0 U/mg protein. Further details are provided in Extended Exper-

imental Procedures.

Drugs

The drugs usedwere picrotoxin 50 mM, strychnine hydrochloride 10 mM,NBQX

salt 10 mM (NBQX), glycine 0.1–0.5 mM, D-serine 10–500 mM, D-AP5 50 mM,

ALX 5407 hydrochloride 1 mM (ALX), Ro 25-6981 maleate 2 mM (Ro25-6981),

N-methyl D-aspartate 1 mM (NMDA), ZnCl2 250 nM used in Tricine 10 mM

with the relation [Zinc]free = [Zinc]applied/200 (Paoletti et al., 1997; Paoletti and

Neyton, 2007) and MK-801 maleate 40 mM (MK-801). For electrophysiological

experiments, drugs were all bath-applied except NMDA (see above). Cresyl

violet paraformaldehyde was obtained from Electron Microscopy Science,

Tricine from Sigma, and all other drugs were purchased from Tocris.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Extended Experimental Procedures

and six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.cell.2012.06.029.
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