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SUMMARY

Although rod and cone photoreceptor cells in the
vertebrate retina are anatomically connected or cou-
pled by gap junctions, a type of electrical synapse,
rod-cone electrical coupling is thought to be weak.
Using tracer labeling and electrical recording in the
goldfish retina and tracer labeling in the mouse ret-
ina, we show that the retinal circadian clock, and
not the retinal response to the visual environment,
controls the extent and strength of rod-cone cou-
pling by activating dopamine D2-like receptors in
the day, so that rod-cone coupling is weak during
the day but remarkably robust at night. The results
demonstrate that circadian control of rod-cone elec-
trical coupling serves as a synaptic switch that
allows cones to receive very dim light signals from
rods at night, but not in the day. The increase in the
strength and extent of rod-cone coupling at night
may facilitate the detection of large dim objects.

INTRODUCTION

Vision begins in the retina when rod and cone photoreceptor cells

detect visual images and transduce them into neural signals. It

has been accepted that rods and cones primarily function under

different lighting conditions in that rods mediate dim light (scoto-

pic) vision at night and cones mediate bright light (photopic)

vision during the day (Dowling, 1987), enabling the retina to oper-

ate over the�10 billion-fold change in ambient light intensity that

occurs daily on a sunny day compared to a moonless night. Al-

though ganglion cells, the output neurons of the retina that signal

more central brain areas, indirectly receive both rod and cone in-

put, the synaptic mechanisms and neural circuits that mediate

the switch between rod pathway function at night and cone path-

way function in the day remain largely unknown. Rod signals can

reach ganglion cells via at least two separate pathways in all ver-

tebrate species that have both rods and cones (Bloomfield and

Dacheux, 2001; Copenhagen, 2004). Rods signal bipolar cells

at chemical synapses. In addition, in both mammalian and non-

mammalian retinas, rods and cones are anatomically connected

or coupled by gap junctions (Raviola and Gilula, 1973; Dowling,

1987; Bloomfield and Dacheux, 2001; Copenhagen, 2004),

a type of electrical synapse (Bennett and Zukin, 2004; Connors

and Long, 2004) at which rod input can enter the cone circuit
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and thereby reach ganglion cells. However, evidence to date sug-

gests that rod-cone coupling is relatively weak (Yang and Wu,

1989; Krizaj et al., 1998; Hornstein et al., 2005).

The circadian (24 hr) clock in the retina (Green and Besharse,

2004; Iuvone et al., 2005) regulates rod and cone pathways by

activating dopamine D2-like receptors in the day (Wang and

Mangel, 1996; Barlow, 2001; Ribelayga et al., 2002, 2004). For

example, by increasing dopamine release and activating D2-

like receptors in the day, the retinal clock regulates rod and

cone input to fish cone horizontal cells (Wang and Mangel,

1996; Ribelayga et al., 2002, 2004), second-order cells that re-

ceive synaptic contact from cones, but not from rods (Stell and

Lightfoot, 1975). Due to the action of the clock, cone input to

cone horizontal cells dominates during the day and rod input

dominates at night (Wang and Mangel, 1996; Ribelayga et al.,

2002, 2004). Because in most vertebrate species, including

fish and mammals, (1) rods and cones are connected by gap

junctions (Raviola and Gilula, 1973; Bloomfield and Dacheux,

2001; Copenhagen, 2004), (2) D2-like receptors are expressed

by rods and cones, but not by horizontal cells (Cohen et al.,

1992; Yazulla and Lin, 1995; Witkovsky, 2004), and (3) the retina

contains a circadian clock (Green and Besharse, 2004; Iuvone

et al., 2005), we directly tested the hypothesis that rod input rea-

ches cones and then cone horizontal cells at night due to an in-

crease in rod-cone electrical coupling.

RESULTS

Tracer Coupling between Rods and Cones
We examined the extent of rod-cone tracer coupling during the

subjective day (circadian time [CT] 2–10) and subjective night

(CT 14–22) of a circadian cycle (i.e., constant darkness and tem-

perature) and following 1 hr of dark adaptation during the day

(Zeitgeber Time [ZT] 2–10) and night (ZT 14–22) of a regular 12 hr

light/12 hr dark cycle (see Experimental Procedures). Under these

dark-adapted conditions, when biocytin tracer was iontophor-

esed into individual cones, the tracer was restricted on average

to a few rods (2 ± 1 [SEM]) and cones (3 ± 1) near the recorded

cones during the day and subjective day (Figures 1A and 2A), in-

dicating weak rod-cone coupling. During the night and subjective

night (Figures 1B and 2A), tracer staining was found in numerous

rods (1265 ± 277) and cones (102 ± 19), indicating strong rod-

cone coupling. The average diameter of the tracer-coupled rods

and cones during the night and subjective night was �500 mm.

The extent and the day/night difference in tracer coupling were

not affected by dim light (�5 log Io 500 ms light flashes at 0.125 Hz
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for >60 min) adaptation in the mesopic range (i.e., intensities to

which both rods and cones normally respond) (Figures 1E, 1F,

and 2B). In contrast, tracer remained in the injected cone in

both the day and night following bright light (�2 log Io 500 ms light

flashes at 0.125 Hz for >60 min) adaptation in the photopic range

(i.e., intensities to which cones, but not rods, normally respond)

(Figures 1G, 1H, and 2B), indicating that bright light, but not dim

light, adaptation can override the effects of the clock.

Because the circadian clock in the fish retina increases dopa-

mine release and activates D2-like receptors in the subjective

day (Ribelayga et al., 2002, 2004), we examined the effects of do-

pamine ligands on the extent of rod-cone tracer coupling during

the subjective day. Application of the selective D2-like receptor

antagonist spiperone (10 mM) for >1 hr during the subjective

day increased rod-cone tracer coupling to a similar extent to

that observed at night (Figures 1C and 2A). In contrast, applica-

tion of the D1-like receptor antagonist SCH23390 (10 mM) during

the subjective day had no effect on rod-cone coupling, that is,

the tracer was detected in the injected cone only (n = 3, data

not shown). In addition, the extent of tracer coupling was also re-

stricted to the injected cone during the subjective night following

the application of the D2-like receptor agonist quinpirole (1 mM)

(Figures 1D and 2A). We therefore conclude that the circadian

Figure 1. Rod-Cone Tracer Coupling Varies

with Time of Day

(A–H) Following iontophoresis of biocytin into indi-

vidual cones, the tracer remained in a few cells (in-

dicated by arrows in [A1], [D1], [E1], [G1], and [H1])

near the injected cone during the subjective day

(A), during the subjective night in the presence of

the D2-like receptor agonist quinpirole (1 mM,

[D]), and following dim light adaptation for >60 min

in the day (E) and bright light adaptation for

>60 min in the day (G) and night (H), but diffused

into many rods and cones during the subjective

night (B), during the subjective day in the presence

of the D2-like receptor antagonist spiperone

(10 mM, [C]), and following dim light adaptation

for >60 min in the night (F).

In each of the panels (A)–(H), confocal images of

a whole-mount retina at the level of the rod inner

segments are shown on the left, and perpendicular

views of the 3D reconstruction of the photorecep-

tor cells from the same retina are shown on the

right.

Some cones (arrows) and rods (arrowheads) are

indicated. Scale bars (A–H), 50 mm.

clock in the fish retina decreases

rod-cone coupling in the day by activat-

ing D2-like, and not D1-like, receptors.

Cone Light Responses in the Day
and Night
To determine whether changes in the

extent of tracer coupling between photo-

receptors alter cone light responses,

whole-cell patch-clamp recordings from the inner segments of

individual cones in intact goldfish retinas were obtained during

the subjective day, subjective night, day, and night. The light re-

sponses of dark-adapted cones during the day and subjective

day were similar to those previously reported (Palacios et al.,

1998). Light response threshold was �–5.5 log Io, response am-

plitude increased with increasing light intensity, and response

duration was similar to stimulus duration (Figures 3A, 4A, 4C,

and 5). In contrast, dark-adapted cones at night responded to

light in the scotopic range (i.e., intensities to which rods, but

not cones, normally respond) with a response threshold of

�–7.5 log Io (Figures 3A, 4A, and 4C), indicating the presence

of substantial rod input to cones. Moreover, cone responses at

night were significantly slower and smaller in amplitude

(Figure 3A), response duration was significantly longer than stim-

ulus duration (Figures 3A, 5A, and 5E), and response latency and

time-to-peak were significantly longer than occurred in the day

(Figures 3A, 5C, and 5D) (p < 0.001 for each response measure,

Tukey post hoc test). In addition, the length constant l, a mea-

sure of the cone receptive field size that was derived from the

spot size-response data (see Experimental Procedures) shown

in Figure 4D, was larger at night (48 ± 2 mm) compared to the

day (10 ± 1 mm, p < 0.001, Student’s t test). These observations
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are consistent with the tracer-labeling results and indicate that

rods signal cones during the subjective night, but not during

the subjective day, demonstrating that rod-cone gap junctions

Figure 2. The Circadian Clock in the Goldfish Retina Controls Rod-

Cone Coupling by Activating Dopamine D2-like Receptors in the Day

(A and B) Average numbers of stained cones (open bars) and rods (filled bars)

following biocytin injections into individual cones (one cone injected/retina) un-

der dark-adapted conditions (A) during the day (n = 11) and subjective day (n =

5), night (n = 4) and subjective night (n = 5), subjective day in the presence of

spiperone (n = 6), and subjective night in the presence of quinpirole (n = 6), and

under dim light-adapted conditions ([B], left) during the day (n = 6) and night

(n = 3) and bright light-adapted conditions ([B], right) during the day (n = 2)

and night (n = 3). Under dark-adapted conditions, the number of tracer-cou-

pled rods and cones was significantly greater during the night (p < 0.001)

and during the day following spiperone treatment (p < 0.001) than during the

day under control conditions. Under dim light-adapted conditions, the number

of tracer-coupled rods and cones was significantly greater during the night (p <

0.001) compared to the day (Tukey post hoc analysis). Under bright light-adap-

ted conditions, biocytin was restricted to the injected cone; no other cells were

labeled. Error bars represent SEM.
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are functionally open at night, but not in the day. Moreover, the

receptive field size measurements show that the spatial tuning

of photoreceptor cells is increased at night due to the extensive

coupling between rods and cones at night.

Because cone light responses are slower in the subjective

night, compared to the subjective day (Figures 3A, 5C, and

5D), we examined whether the dominant rod signal to cones at

night, but not in the day, can account for the circadian difference

in cone light response kinetics, by comparing the response ki-

netics of cones and rod horizontal cells during the subjective

night. As shown in Figure 5A, the response waveforms of cones

and rod horizontal cells to light stimuli of similar intensity closely

match during the subjective night, but not during the subjective

day, a finding that strongly suggests that the circadian difference

in cone light response kinetics is primarily due to the increase in

rod-cone coupling at night, that is, to the fact that cone responses

Figure 3. Dark-Adapted Cones Receive Very Dim Light Signals from
Rods at Night, but Not in the Day

(A and B) Representative examples of cone responses to a series of full-field

white light stimuli of increasing intensity recorded under dark-adapted condi-

tions (A) during the subjective day, subjective night, in the presence of spiper-

one (10 mM) during the subjective day, and in the presence of quinpirole (1 mM)

during the subjective night, and under dim and bright light-adapted conditions

(B) during the day and night.
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at night, but not in the day, are dominated by the slower rod sig-

nals. Thus, although circadian control of cone phototransduction,

ionic mechanisms, and voltage-dependent conductances may

play a role in the day/night difference in cone response kinetics,

the primary means by which the circadian clock regulates cone

light response kinetics is by controlling rod-cone coupling. This

conclusion is also supported by the finding that the cone dark

resting potential did not significantly change in the day and night

under dark-adapted conditions: � 30.1 ± 0.7 mV during the

day (n = 10), � 33.3 ± 1.1 mV during the subjective day (n = 15),

� 32.6 ± 1.6 mV during the night (n = 14), and� 33.2 ± 1.2 mV dur-

Figure 4. The Retinal Circadian Clock Regulates Cone Light Re-

sponses and Receptive Field Size by Activating D2-like Receptors

in the Day so that Rod Input Is Dominant at Night, but Not Present

in the Day

(A and B) Average normalized intensity-response curves of cones (one cone/

retina) recorded under dark-adapted conditions (A) during the day (n = 7)

and subjective day (n = 9) (open circles), night (n = 7) and subjective night

(n = 3) (filled circles), in the subjective day in the presence of spiperone

(open diamonds, n = 5), and in the subjective night in the presence of quinpirole

(filled diamonds, n = 9), and under light-adapted conditions (B). Shown are

values obtained under dim light-adapted conditions during the day (open

squares, n = 6) and night (filled squares, n = 6), and under bright light-adapted

conditions in the day (n = 9) and subjective day (n = 2) (open triangles) and night

(n = 6) and subjective night (n = 4) (filled triangles).

(C) Average day/night and circadian rhythms of the cone light response thresh-

old (i.e., intensity required to elicit a 0.5 mV response) under dark-adapted

conditions. The average cone light response threshold (log intensity) was sig-

nificantly higher during the day (p < 0.001) and subjective day (p < 0.001) than

during the night and subjective night (Tukey post hoc analysis). Data points

represent averages of 4 to 15 measurements.

(D) Average normalized response amplitudes of dark-adapted cones plotted

against stimulus radius for a stimulus of intensity�5 log Io. These data indicate

that the receptive field size of cones is larger at night than in the day. Measure-

ments were performed during the day (open circles, n = 6) and night (filled cir-

cles, n = 6).

(A–D) Error bars indicate SEM.
ing the subjective night (n = 6). Measurements of cone I-V curves

also demonstrate that the cone resting potential was similar in the

subjective day and night (Figure 5F). Finally, the cone input resis-

tance, which was derived from its I-V curve (Figure 5F), was lower

at night (394 ± 34 MU) compared to the day (1359 ± 134 MU, p <

0.001, Student’s t test), a finding consistent with an increase in

photoreceptor coupling at night.

Application of spiperone for >1 hr during the subjective day

decreased response threshold by �2 log units and modified

other response characteristics so that cone light responses re-

sembled those observed at night (Figures 3A, 4A, and 5C–5E)

(p < 0.01 compared to the day and p > 0.05 compared to the

night for each response measure, Tukey post hoc test). In con-

trast, application of quinpirole for >1 hr during the subjective

night increased response threshold by�2 log units and modified

other response characteristics so that cone light responses re-

sembled those observed during the day (Figures 3A, 4A, and

5C–5E) (p < 0.05 compared to the night and p > 0.05 compared

to the day for each response measure, Tukey post hoc test). The

half-saturating intensity was significantly greater during the day

(�3.96 ± 0.36 log Io) and at night in the presence of quinpirole

(�4.05 ± 0.32 log Io) than at night under control conditions

(�5.55 ± 1.27 log Io; p < 0.05) and during the subjective day in

the presence of spiperone (�5.25 ± 1.66 log Io; p < 0.05). There

was no difference between night and subjective day + spiperone

(p > 0.05) and day and subjective night + quinpirole (p > 0.05, Tu-

key post hoc test) (Figure 4A). Finally, application of SCH23390

during the subjective day did not affect the light responses of

dark-adapted cones (n = 7, data not shown).

Following dim light adaptation for >60 min during the day and

night, cone light responses were similar to those observed under

dark-adapted conditions during the day and night, respectively

(Figures 3B and 4B). The half-saturating intensity was significantly

different between the day (�3.82 ± 0.76 log Io) and night (�5.60 ±

1.39 log Io; p < 0.01,Tukeypost hoc test).Together with the effects

of dim light adaptation on tracer coupling, these observations

demonstrate that light in the mesopic range does not affect rod-

cone coupling. Thus, under normal conditions at night (i.e., ambi-

ent light level in the scotopic to mesopic range) the retinal clock,

and not dim (scotopic to mesopic) light, increases rod-cone cou-

pling around dusk and decreases rod-cone coupling at dawn.

Following bright light adaptation for >60 min, cone light re-

sponses were similar in both the day and night (p > 0.05 for

each response measure, Tukey post hoc test), indicating that

bright light adaptation overrides circadian control. Specifically,

as observed under dark-adapted conditions during the day, re-

sponse amplitude increased with increasing light intensity, and

response duration was similar to stimulus duration (Figure 3B,

5D, and 5E). The half-saturating intensity was not significantly

different between day (�3.47 ± 0.41 log Io) and night (�3.58 ±

0.41 log Io; p > 0.05) but day and night under bright light-

adapted conditions were both different from night under dim

light-adapted conditions (p < 0.001, Tukey post hoc test)

(Figure 4B). These observations are consistent with the ‘‘mask-

ing effect’’ of bright light on circadian systems, including the

retinal clock (Green and Besharse, 2004, for review), but do

not indicate that bright light adaptation normally alters rod-

cone coupling.
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Because previous studies have reported that bright light stim-

ulation of dark-adapted amphibian retinas introduces a ‘‘rod pla-

teau potential’’ into cone light responses by slightly increasing

rod-cone coupling (Yang and Wu, 1989; Krizaj et al., 1998), we ex-

amined whether the duration of cone responses to bright stimuli

(i.e., >�2 log Io) in the day depended on whether the retinas were

previously dark-adapted or bright light-adapted. We found that

the duration of cone light responses was longer under dark-adap-

ted conditions due to the presence of a long-lasting (several sec-

onds) hyperpolarizing afterpotential or plateau potential (Figures

5B and 5E). However, the afterpotential was eliminated when

bright light stimulation continued for >5 min (Figure 5B). Because

afterpotentials are believed to be rod driven, these observations

suggest that the introduction of a plateau potential in the cone re-

sponse to bright light stimulation following dark adaptation is due

to a transient increase in rod-cone coupling. Moreover, bright

light stimulation of previously light-adapted (R60 min) goldfish

Figure 5. Kinetics of Cone Light Responses

during the Day and Night under Different

Lighting Conditions

(A) Representative examples of cone responses to

a light stimulus flashed (500 ms) at intensity�5 log

Io during the subjective day and subjective night

(gray trace), and of a rod horizontal cell response

to the same stimulus. The amplitude of each trace

has been normalized relative to its peak for better

comparison.

(B) Representative example of the responses of an

individual cone to a light stimulus flashed (500 ms)

at intensity �2 log Io during the day immediately

following 60 min of dark adaptation (gray trace),

and following subsequent bright light adaptation

(�2 log Io, 500 ms stimuli at 0.125 Hz) for 6 min

(black trace). Note that the cone response ex-

hibited a prolonged plateau potential under dark-

adapted conditions, but not following 6 min of

bright light adaptation.

(C–E) Average latency (C), time-to-peak (D), and

duration of the hyperpolarization (E) of cone light re-

sponses recorded under dark-adapted conditions

during the night (filled circles; n = 10–19), day

(open circles; n = 12–26), subjective day in the pres-

ence of spiperone (10 mM) (open diamonds; n = 5),

and subjective night in the presence of quinpirole

(1 mM) (filled diamonds, n = 9) or under bright

light-adapted conditions during the day (open trian-

gles; n = 7–11) and night (filled triangles; n = 7–10).

(F) Relationship between membrane current and

membrane potential of dark-adapted cones dur-

ing the day (open circles, n = 30) and night (n =

27). The peak current was measured when cones

were voltage clamped at �35 mV and stepped

(duration 200 ms every 400 ms) from �90 mV to

+30 mV in 10 mV increments.

(C–F) Error bars represent SEM.

retinas in the day did not evoke a long-

lasting afterpotential in cones and, more

generally, had no effect on cone light re-

sponses or on tracer coupling between

rods and cones (Figures 1–4). These re-

sults thus suggest that bright light stimulation in the day of fish

and amphibian retinas produces a small, transient increase in

rod-cone coupling if the retinas are dark-adapted immediately

prior to the light stimulation. However, bright light stimulation in

the day of previously bright light-adapted retinas, which normally

occurs in midday, does not alter rod-cone coupling.

Cone Spectral Sensitivity in the Day and Night
In addition to the clear day/night differences in cone light

response threshold and kinetics, the spectral sensitivity of

dark-adapted cones was different in the day compared to the

night (Figure 6A). That is, based on their spectral sensitivity prop-

erties under dark-adapted conditions during the day or subjec-

tive day, recorded cones could be distinguished into three types:

L (lmax �608 nm), M (lmax �539 nm), and S (lmax �451 nm)

(Palacios et al., 1998; Govardovskii et al., 2000). In contrast,

at night, all dark-adapted cones were most sensitive to
794 Neuron 59, 790–801, September 11, 2008 ª2008 Elsevier Inc.
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Figure 6. Circadian Variations in Cone

Spectral Sensitivity

(A) Average spectral sensitivity of cones recorded

under dark-adapted conditions during the day or

subjective day fit one of three nomograms (thin

dotted curves) corresponding to the three major

known types of goldfish cone pigments: L, M,

and S. Data were obtained from recorded red

cones (open squares; n = 9), green cones (open

circles; n = 6), and blue cone (open triangle; n =

1). In contrast, the spectral sensitivity of all dark-

adapted cones recorded at night peaked at

�535 nm (filled circles; n = 10). Although cone

spectral sensitivity at night under dark-adapted

conditions closely fits a rod nomogram (solid thick

line) for 400 nm < l < 600 nm, it does not fit the no-

mogram as well for l > 600 nm. Rather, the data

points closely fit a modified nomogram that com-

bines goldfish rod and L cone pigment nomo-

grams (dotted thick curve; lmax = 537 ± 3 (SD)

nm; r2 = 0.91). Following application of spiperone (10 mM) (open diamonds; n = 2), cone spectral sensitivity in the subjective day resembled that observed during

the subjective night, and data points fit well the modified nomogram (lmax = 537 ± 3 nm; r2 = 0.96).

(B) Following bright light adaptation at night or during the subjective night, three groups of cones with different spectral sensitivities were observed: red cones

(filled squares; n = 4), green cones (filled circles; n = 5), and blue cone (filled triangles; n = 1), whereas bright light adaptation during the day or subjective day did

not affect the relative spectral sensitivity of the recorded cones (red cones: open squares; n = 2; green cones: open circles; n = 6) but slightly decreased the

absolute sensitivity. Nomograms as in (A).

(A and B) Data points represent average sensitivity ± SEM.
green-wavelength light (lmax �535 nm). The spectral sensitivity

of dark-adapted cones at night closely resembled that of gold-

fish rods (Govardovskii et al., 2000) for l < 600 nm but exhibited

a higher sensitivity than rods to l > 600 nm (Figure 6A), suggest-

ing that red cones contribute to the rod-dominated spectral sen-

sitivity of cones at night. The threshold stimulus (500 nm) inten-

sity of the rod signal in cones at night was �0.08 Rh*/rod/0.5 s

on the retina, indicating that cones respond to light in the low

scotopic range at night, when the background intensity is in

the low scotopic range. In addition, the spectral sensitivity curve

of cones recorded during the subjective day in the presence of

spiperone was very similar to the spectral sensitivity curve

obtained during the subjective night (Figure 6A). The spectral

sensitivity curves of two green cones and one red cone in the

presence of quinpirole at night were similar to those of green

and red cones, respectively, during the subjective day (data

not shown). Finally, SCH23390 applied during the day did not

affect cone spectral sensitivity (n = 1 red cone, data not shown).

Together, these data indicate that endogenous activation of

D2-like receptors in the day eliminates rod input to cones.

Although all dark-adapted cones at night were most sensitive

to green-wavelength light (lmax �535 nm), bright light-adapted

cones at night (i.e., following bright light adaptation for >60

min) could be distinguished into three types: L (lmax �608 nm),

M (lmax�539 nm), and S (lmax�451 nm), based on their spectral

sensitivity (Figure 6B), as observed for dark-adapted cones dur-

ing the day.

Mouse Rod-Cone Tracer Coupling
In order to determine whether the day/night difference in rod-

cone coupling observed in goldfish occurred in a mammalian ret-

ina as well, we investigated whether the extent of tracer coupling

between photoreceptors in mice, as measured by intercellular

propagation of neurobiotin after ‘‘cut loading’’ (see Experimental
Procedures), depends on the time of day under dark-adapted

conditions. Goldfish retinas were processed at the same time

as a control. In goldfish retinas, the diffusion of neurobiotin, as re-

vealed by the fluorescence intensity of Alexa 488, was restricted

to the edge of the cut during the day (Figures 7A and 7G, length

constant [l] = 4.8 ± 0.1 mm) but was observed as far as 200 mm

from the cut at night (Figures 7B and 7G, l = 36.0 ± 0.9 mm) or dur-

ing the day in the presence of spiperone (Figures 7C and 7G, l =

39.0 ± 1.1 mm; p < 0.001, Tukey post hoc test). In mouse, fluores-

cence could be seen in cells that were adjacent to the cut during

the day (Figures 7D and 7H, l = 4.5 ± 0.1 mm). Based on their mor-

phology, these cells were mostly cones (Figure 7D2). In contrast,

fluorescence was detected in both cones and rods during the

night as far as 60 mm from the cut (Figures 7E and 7H, l = 18.6 ±

0.7 mm) and during the day in the presence of spiperone (Fig-

ures 7F and 7H, l = 14.1 ± 0.4 mm; p < 0.001, Tukey post hoc

test). The exponential decrease in fluorescence intensity as

a function of distance from the cut in all cases examined (Figures

7G and 7H) indicates that neurobiotin entered the photorecep-

tors via the cut and not from other sites. Moreover, the qualita-

tively similar day/night difference observed in goldfish with tracer

injections into single cones (Figures 1 and 2) and with cut loading

substantiates the use of cut loading as a technique to investigate

the extent of photoreceptor coupling in the mammalian retina.

These findings thus indicate that in mammals, as well as in fish,

the retinal circadian clock controls rod-cone coupling by activat-

ing D2-like receptors during the day, so that rod-cone coupling is

weak during the day but remarkably robust at night.

DISCUSSION

The data presented here thus demonstrate that the circadian

clock in the goldfish retina, and not the retinal response to the

level of ambient illumination, regulates rod-cone electrical
Neuron 59, 790–801, September 11, 2008 ª2008 Elsevier Inc. 795
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coupling by activating D2-like receptors in the day, so that cou-

pling is weak during the day but robust at night. The results further

indicate that rod input reaches fish cone horizontal cells at night

via rod-cone gap junctions, demonstrating that the increased

strength of rod-cone electrical coupling at night shapes in part

the light responses of second-order neurons that are part of the

cone circuit (Wang and Mangel, 1996; Ribelayga et al., 2002,

2004). Moreover, our observations on both goldfish and mouse

photoreceptor cells strongly suggest that the retinal clock con-

trols the strength of rod-cone coupling in most, if not all, mamma-

lian and nonmammalian retinas that have both rod and cone pho-

toreceptors (duplex retinas). Circadian clock control of the

strength of the electrical synapses between rods and cones

thus serves as a synaptic switch that allows rod input to reach

the cone circuit at night, but not in the day. We have also observed

that repetitive dim light stimulation in the scotopic to mesopic

range did not alter the effects of the clock on rod-cone coupling

and on cone light responses (Figures 1–4), a finding that indicates

that the retinal clock, and not the retinal response to the normal

visual environment at night, controls rod-cone coupling.

Based primarily on studies of individual, dissociated rods and

cones, it has been accepted that rods, but not cones, respond to

very dim light stimuli and operate at low light levels at night. Our

results, however, demonstrate that cones in the intact retina re-

spond to very dim light stimuli at night, but not in the day. In fact,

Figure 7. Day-Night Difference in Photore-

ceptor Tracer Coupling in the Mouse Retina

(A–F) Representative examples of photoreceptor

tracer coupling measured by intracellular propa-

gation of neurobiotin tracer after cut loading in

goldfish (A–C) and mouse (D–F) retinas under

dark-adapted conditions during the day (A and

D), night (B and E), and in the presence of spiper-

one (10 mM) during the day (C and F). Similar re-

sults have been observed in three independent

experiments (two retinas/experiment). Shown are

confocal images of whole-mount retinas at the

level of the rod inner segments (A–C, D1, E1, and

F1) and detailed perpendicular views of the 3D re-

construction of the mouse photoreceptor cells ad-

jacent to the cut at higher magnification (D2, E2,

and F2).

Large arrows (A–C and D1–F1) indicate the loca-

tion of the cut. Some cones (small arrows) and

rods (arrowheads) are shown in (D2)–(F2). Scale

bars: 200 mm (A–C), 50 mm (D1, E1, and F1),

10 mm (D2, E2, and F2).

(G and H) Relative fluorescent intensity as a function

of the distance from the cuts in goldfish (G) and

mouse (H) retinasunder the threeexperimental con-

ditions tested in (A)–(F). Averaged data from four ex-

periments (one retina/experiment) are shown.

the threshold light response of cones

(Figure 4) and cone horizontal cells at

night was in the low scotopic range, indi-

cating that cones and cone horizontal

cells can detect very dim light signals

from rods at night. The clock-induced in-

crease in rod-cone coupling at night may not have been previ-

ously observed because prior studies did not investigate cone

light responses or rod-cone coupling in an intact retina prepara-

tion at night under dark-adapted conditions. Our results describe

the light responses of dark-adapted cones at night in an intact

retina and show that these responses are dramatically different

from those observed when retina preparations are sliced, bright

light-adapted, or studied in the day. The limited rod-cone tracer

coupling that we observed under dark-adapted conditions in the

day (Figures 1, 2, and 7) is in agreement with previous reports of

weak rod-cone coupling under dark-adapted conditions in the

day in amphibian (Yang and Wu, 1989; Krizaj et al., 1998) and pri-

mate (Hornstein et al., 2005) retinas.

When the retinal clock increases the strength of rod-cone cou-

pling at night, rod input dominates both cone and cone horizontal

cell light responses because rods outnumber cones in the gold-

fish retina by 8- to 15-fold (Stell and Harosi, 1976), so that cone

light signals are shunted by the strong coupling between rods

and cones at night. This accounts for the lack of cone input to

goldfish rod horizontal cells during the subjective night (Wang

and Mangel, 1996; Ribelayga and Mangel, 2007). In addition,

the observation that the spectral sensitivity of all cones is similar

to that of rods at night (Figure 6) is consistent with the findings that

the spectral sensitivity of H1 cone horizontal cells (Wang and

Mangel, 1996) and of H2 and H3 cone horizontal cells (Y. Wang
796 Neuron 59, 790–801, September 11, 2008 ª2008 Elsevier Inc.
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Figure 8. The Retinal Circadian Clock Con-

trols Rod-Cone Coupling

The circadian clock in the retina increases dopa-

mine release from dopaminergic neurons during

the subjective day, thereby activating the D2-like

receptors on rods and cones so that the conduc-

tance of rod-cone gap junctions and the rod signal

to cones and cone horizontal cells are decreased

in the subjective day, compared to the subjective

night. The traces shown are schematic represen-

tations of cone (top) and cone horizontal cell (bot-

tom) responses to a 500 ms light stimulus flashed

at intensity�5 log Io during the subjective day (left)

and subjective night (right). The cone traces were

generated from the averaged response latency,

time-to-peak, and response duration data shown

in Figure 5, and the cone horizontal cell traces

were generated from similar averaged response

kinetic data from Ribelayga et al. (2002, 2004), as

well as from unpublished data. In each case, the

three data points were connected by a com-

puter-generated smoothing curve. The amplitude

of each trace was normalized relative to its peak

for better comparison of response kinetics. See

Discussion for details.
and S.C.M., unpublished data) are similar to that of rods during

the subjective night, but not during the subjective day.

The finding that rod input dominates cone responses to dim

light stimuli during the subjective night, but that rod input cannot

be detected in cones during the subjective day (Figures 3A, 4A,

4C, 5, and 6A), indicates that the retinal clock controls the cou-

pling strength of rod-cone gap junctions and demonstrates

that rod-cone gap junctions are functionally open at night, but

not in the day. Moreover, the finding that the average ratio of

coupled rods to cones during the night and following spiperone

application during the subjective day was �12 (Figure 2A),

a value that is in close agreement with the ratio of rods to cones

in the goldfish retina, is consistent with a clock-mediated in-

crease in rod-cone coupling at night. Although it is possible

that the clock increases the conductance of cone-cone and/or

rod-rod gap junctions at night, in addition to increasing rod-

cone coupling, the increase in the conductance of rod-cone

gap junctions at night effectively increases electrical and cellular

communication between cones and cones and between rods

and rods, as well as between rods and cones.

In fish, the present results and previous findings (Wang and

Mangel, 1996; Ribelayga et al., 2002, 2004; Iuvone et al., 2005)

indicate that the circadian clock in the retina regulates the light

responses of cones and cone horizontal cells in part according

to the scenario illustrated in Figure 8. The retinal clock increases

dopamine release from dopaminergic interplexiform cells (Dow-

ling, 1987) during the subjective day by decreasing the synthesis

and release of melatonin, which inhibits dopamine release (Ribe-

layga et al., 2004; Iuvone et al., 2005). The resultant increased

level of extracellular dopamine then increases activation of the

D2-like receptors on rods and cones (Witkovsky, 2004), which in

turn results in a decrease in intracellular cAMP and in protein ki-

nase A activity in the photoreceptor cells. In contrast, during the

subjective night, the retinal clock reduces extracellular dopamine
levels and D2-like receptor activation, so that intracellular cAMP

levels and protein kinase A activity increase. Indirect evidence

based on previous studies of goldfish cone horizontal cells in

the subjective day and night (Ribelayga et al., 2002, 2004) sug-

gests that an increase in protein kinase A activity at night in-

creases the conductance of rod-cone gap junctions so that rod

input dominates cones and cone horizontal cells at night. Based

on the finding that rod-cone coupling in mouse retinas is de-

creased during the subjective day due to endogenous activation

of D2-like receptors (Figure 7), as occurs in fish, it seems likely that

a similar scenario as that shown in Figure 8 also occurs in mam-

malian retinas. In fact, previous studies have suggested that rod

signals reach horizontal cells via rod-cone gap junctions in the

cat (Nelson, 1977) and monkey (Verweij et al., 1999). However,

the means by which the clock in the mammalian retina increases

dopamine release during the subjective day is unclear, that is, the

melatonin rhythm may generate the dopamine rhythm (Iuvone

et al., 2005) or a circadian clock in dopaminergic cells may directly

control dopamine metabolism (Ruan et al., 2006). Finally, as pro-

posed previously (Ribelayga and Mangel, 2003, 2007), although

the clock-driven increase in extracellular dopamine during the

day is sufficient to activate the high affinity D2-like receptors on

rods and cones (Figures 1–4, 6, and 7), it is not sufficient to acti-

vate the low-affinity D1-like receptors on horizontal cells, which in-

stead are activated by the higher levels of extracellular dopamine

produced by bright light during the day. Thus, there may be two

complementary dopamine systems in the retina: a circadian clock

system that activates high-affinity D2-like receptors at dawn and

decreases their activation at dusk and a bright light system that

activates low-affinity D1-like receptors during the day.

Functional and Clinical Significance
In addition to providing a means by which scotopic signals from

rods reach the cone circuit at night, the circadian clock-induced
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increase in rod-cone coupling at night has at least three other

highly significant functional implications. First, in addition to sig-

naling cones at night via rod-cone electrical synapses, many rods

converge onto rod bipolar cells (or, in nonmammalian retinas,

many rods converge onto bipolar cells that also receive cone in-

put [Stell et al., 1977]) at highly nonlinear chemical synapses

(Field and Rieke, 2002; Copenhagen, 2004), so that the rod path-

way pools dim light signals over a large spatial domain (Warrant,

1999). Because the intrinsic noise in each photoreceptor cell is in-

dependent of the noise in other photoreceptors, but local corre-

lations within the visual scene produce shared photoreceptor

signals, photoreceptor coupling reduces photoreceptor noise

more than it reduces their output signals (Lamb and Simon,

1976; Tessier-Lavigne and Attwell, 1988; Copenhagen, 2004),

especially for low spatial frequency signals (DeVries et al.,

2002; Laughlin, 2002). The increased coupling between photore-

ceptors at night will therefore enhance the signal-to-noise ratio

and the reliability of the rod light response before the signal and

noise are distorted by the rod to rod bipolar cell nonlinear syn-

apse. The increase in photoreceptor coupling at night will thus

tune the retina to detect large dim objects, an idea that is sup-

ported by the finding that cone receptive field size increases at

night (Figure 4D). Viewed from this perspective, circadian control

of rod-cone coupling enhances the detection of large dim objects

at night and small objects during the day. Moreover, the finding

that dark-adapted fish cones at night respond to light in the low

scotopic range indicates that extensive coupling between photo-

receptors does not impede the transmission of very dim light

signals from rods to cones, even though the detection of spatial

detail is reduced. In addition, circadian control of rod-cone cou-

pling likely mediates in part the circadian rhythm in visual sensi-

tivity, a phenomenon of retinal origin that has been observed in

many vertebrate species, including fish, rat, and human (Barlow,

2001).

Second, because functioning electrical synapses can syn-

chronize coupled neurons (Connors and Long, 2004; Bennett

and Zukin, 2004), the increase in the strength of rod-cone elec-

trical coupling at night may synchronize the neural and metabolic

activity of rods and cones on a daily basis. Moreover, because

both rods and cones express circadian clock genes (Green

and Besharse, 2004; Iuvone et al., 2005), the strong electrical

coupling between rods and cones at night may synchronize

the oscillator activity of the circadian clocks in individual rods

and cones, thus minimizing phase differences in their oscillations

(Connors and Long, 2004).

Finally, photoreceptor survival may depend on the daily in-

crease in rod-cone coupling at night. Specifically, because gap

junction channels are large enough to allow not only the flow of

electric current but also the diffusion of intracellular signaling

molecules, nutrients, and small metabolites between coupled

cells (Bennett and Zukin, 2004; Connors and Long, 2004), our

findings suggest that metabolic exchange between rods and

cones occurs at night on a daily basis. In fact, cone survival

may depend on the presence of healthy rods, as suggested by

the delayed death of neighboring cones in rod-cone dystrophy

(i.e., retinitis pigmentosa) (Delyfer et al., 2004; Burns and Arshav-

sky, 2005). Cone survival might depend on the diffusion of nutri-

ents and protective factors from coupled healthy rods (Strie-
798 Neuron 59, 790–801, September 11, 2008 ª2008 Elsevier Inc.
dinger et al., 2005) and/or cones might die due to the diffusion

of proapoptotic factors from coupled dying rods (Ripps, 2002).

In summary, the circadian clock in the retina, and not the ret-

inal response to the level of ambient illumination, controls the ex-

tent and strength of rod-cone coupling by activating dopamine

D2-like, but not D1-like, receptors in the day, so that rod-cone

coupling is weak during the day but remarkably robust at night.

The clock-controlled increase in rod-cone electrical coupling at

night not only provides a highly sensitive pathway for dim light

signals from rods to directly enter the cone circuit, but also en-

hances the reliability of the rod light response and therefore

the sensitivity of the rod to rod bipolar cell pathway to large

dim light stimuli. The retinal circadian clock thus produces a syn-

aptic switch between rod pathway function at night and cone

pathway function in the day. Viewed as an optical device, the ret-

inal clock controls the aperture or receptive field size of photore-

ceptor cells through which light signals reach the post-photore-

ceptor retina. It opens wide the aperture at night, enhancing the

detection of large dim objects, and narrows the aperture during

the day, facilitating the detection of small objects.

EXPERIMENTAL PROCEDURES

Goldfish and Mouse Neural Retina Preparations

The care and use of goldfish and mice were in accordance with federal and in-

stitutional guidelines. Goldfish (Carassius auratus), �5 inches long, were

housed in a 12 hr light/12 hr dark cycle (with lights-on at 3 a.m.) under constant

conditions of temperature (22�C) for at least 2 weeks before an experiment.

Fish were dark adapted for at least an hour before surgery. In the case of cir-

cadian experiments, fish were dark-adapted for 24–72 hr before surgery. The

circadian time was thus defined by the projected Zeitgeber time from the pre-

vious 12 hr light/12 hr dark cycle. Fish were deeply anesthetized with metha-

nesulfanate (MS222, 150 mg.l�1), an eye enucleated, and the intact neural ret-

ina isolated, as described (Wang and Mangel, 1996; Ribelayga et al., 2002,

2004). Surgery was done using night-vision infrared goggles. The intact neural

goldfish retina with photoreceptor side up was superfused at 1 ml.min�1 in a

2 ml chamber with saline that contained (in mM) 130 NaCl, 20 NaHCO3,

2.5 KCl, 10 glucose, 1 MgCl2, and 0.7 CaCl2 continuously gassed with 5%

CO2/95% O2 to maintain pH at 7.5. In some experiments, the selective

D2-like antagonist spiperone, the D2-like agonist quinpirole, or the D1 antago-

nist SCH23390 (Sigma, St Louis, MO) was dissolved in the superfusate and

applied for at least 1 hr before electrical recording/tracer iontophoresis.

Adult CBA/CaJ mice from Jackson Labs (Bar Harbor, ME) were housed in

a 12 hr light/12 hr dark cycle (with lights-on at 6 a.m.) for at least 2 weeks before

an experiment. Dark-adapted mice were anesthetized with ketamine (100 mg/

kg, i.p.), decapitated, and both eyes enucleated. Neural mouse retinas were

isolated under dim red light (long-pass filter 650 nm) and placed in saline that

contained (in mM) 120 NaCl, 25 NaHCO3, 5 KCl, 10 glucose, 1 MgSO4-7H2O,

1 NaH2PO4, 0.1 glutamine, and 2 CaCl2. The retinas were then incubated at

37�C in an atmosphere containing 5% CO2 and 95% O2 to maintain pH at 7.3.

Patch-Clamp Recording

Whole-cell patch-clamp recordings from cone inner segments in intact gold-

fish neural retinas were obtained under continuous dark-adapted conditions

in the subjective day and subjective night of a circadian cycle and in the day

and night of a 12 hr light/12 hr dark cycle. Cone responses to dim full-field

white and spectral light stimuli were measured to assess the light responsivity

of the cones and determine whether they received rod input. Recordings (cur-

rent-clamp configuration with I = 0) were obtained under visual control with

a 3900A amplifier (Dagan Corporation, Minneapolis, MN) using pCLAMP soft-

ware and digitized with a Digidata 1322A interface (Molecular Devices, Sunny-

vale, CA). Signals were filtered at 1 kHz with a four-pole Bessel filter and

sampled at 1 kHz. The preparation and electrode tips were visualized under



Neuron

Cones Receive Dim Light Input from Rods at Night
infrared (>900 nm) light. Electrodes were fashioned from borosilicate glass

capillaries (OD 1.2 mm, ID 0.69 mm, Sutter Instruments, Novato, CA). The pi-

pette solution contained (in mM) 20 KCl, 100 K-D-gluconate, 7.48 KHCO3, 5.0

HEPES, 1.0 MgCl2, 4.0 Na2-ATP, 0.1 Na3-GTP, and 5 Na2-phosphocreatine.

The pH was adjusted to 7.3 with KOH. Biocytin (0.3%) was added fresh daily

to a frozen sample of pipette solution. Addition of the tracer lowered the pH to

7.2. Osmolarity was�260 mOsm with biocytin. The tip resistance measured in

the bath was �15 MU, and the liquid junction potential was adjusted to 0. The

seal resistance ranged from 1 to 20 GU. Following rupture, the series resis-

tance was 20–30 MU. In some experiments, the membrane current was mea-

sured under voltage-clamp configuration. Cones were clamped at �35 mV,

and the voltage was stepped (200 ms duration every 400 ms) from �90 mV

to +30 mV in 10 mV increments and the peak current measured. We recorded

light responses from short-single, medium-single, medium-double, long-sin-

gle, and long-double goldfish cones (Stell and Harosi, 1976).

Light Stimulation

Light stimuli, 500 ms in duration, were provided by an optical bench that in-

cluded a 100 W tungsten-halogen lamp light source, and narrow-band interfer-

ence (from 400 to 700 nm) and neutral density filters (Melles Griot). The output

of the optical bench reached the microscope through a fiber optic and was fo-

cused onto the retina. The unattenuated light intensity (Io) at the level of the ret-

ina was 200 mW.cm�2. Intensity values indicated in the text are relative to Io.

During all circadian and dark adaptation electrical recording/tracer injection

experiments, background illumination was �4.5 log units lower than daytime

cone threshold and only one cone/retina was studied. In addition, in all circa-

dian and dark adaptation tracer injection experiments, only light stimuli ranging

from �9 log Io to �5 log Io were flashed to minimize alteration of the dark-

adapted state. Dim and bright light adaptation were achieved using �5 and

�2 log Io flashes (duration 500 ms, frequency 0.125 Hz), respectively, deliv-

ered for at least 60 min prior to patch-clamp recording and tracer injection,

and was maintained until the end of light adaptation experiments. A 0.5 mV cri-

terion response was used for spectral sensitivity measurements to minimize al-

teration of the dark-adapted state. The maximum, unattenuated light intensity

of the stimulus at 500 nm was 5.01 3 1012 photons.cm�2.s�1.

The receptive field of a cell that is part of a continuous two-dimensional net-

work can be described by the length constant (l) with l = O(Rm/Rs), where Rm is

the membrane resistance of the network of cells, and Rs is the sheet or trans-

junctional coupling resistance (Lamb and Simon, 1976). In order to measure

the receptive field size of goldfish cones, we recorded the light responses of

dark-adapted cones to light stimuli of different radii and of 500 ms duration.

To compare cone receptive field size in the day and night, we chose a stimulus

intensity of �5 log Io, because the spot intensity, which had to be the same in

the day and night, had to be above cone threshold during the day (��5.5 log

Io), and because repeated flashes of �5 log Io light stimuli do not affect rod-

cone coupling during the day or night (see Figures 1–4). Stimulus size was con-

trolled using circular apertures mounted inside the microscope. These aper-

tures were rotated into the light beam, producing spot stimuli 5–2600 mm in

radius that were centered on the outer segments of the recorded cones.

Tracer Coupling

Individual cones in intact goldfish neural retinas were labeled by iontophoresis

of the biotinylated tracer biocytin (0.3%) during whole-cell patch-clamp re-

cording by maintaining the recorded cone at +20 mV for 10 min. Thirty minutes

after biocytin injection, retinas were fixed in a solution of 4% paraformalde-

hyde in 0.1 M phosphate buffer (pH 7.4) for 2 hr at room temperature. Biocytin

was visualized using streptavidin-conjugated cyanine 3 (Jackson ImmunoRe-

search, West Grove, PA).

Cut Loading

Several perpendicular radial cuts were made with a razor blade in goldfish and

mouse retinas immediately after isolation. The retinas were then incubated for

15 min in the bicarbonate-buffered saline solution that contained 0.05% neu-

robiotin. Following cell loading and diffusion, the retinas were then washed in

saline without tracer and fixed in 4% paraformaldehyde in 0.1 M phosphate

buffer (pH 7.3) for 1 hr. Neurobiotin was visualized with strepavidin-conju-

gated-Alexa 488 (Molecular Probes, Eugene, OR). In some experiments, the
retinas were isolated and incubated in saline with 10 mM spiperone for

30 min before the cuts were made. Spiperone was present during the subse-

quent steps as well as until fixation.

Imaging

Cells were imaged and photographed with a Zeiss 510 META laser-scanning

confocal microscope (Carl Zeiss, Inc., Thornwood, NY). Serial reconstructions

of rods and cones were made from z stacks of confocal images with LSM-5

Image Browser 3,2,0,115 (Carl Zeiss). Rods and cones could be clearly distin-

guished in z stacks of whole-mount sections based on the diameters of their

somata, and thus counted with NIH ImageJ software. Quantification of the

cut-loading labeling was performed with NIH ImageJ software.

Data Analysis

Because under dark-adapted conditions we did not observe any tracer cou-

pling, light response, or spectral sensitivity differences between day and

subjective day, and night and subjective night, averaged data (Figures 2A,

4A, 5C–5E, and 6A) were pooled into two groups, day-dark-adapted and

night-dark-adapted. All statistical analyses were performed using Origin 7.0

software (OriginLab Corp., Northampton, MA).

Rod-Cone Tracer Coupling

The numbers of cones and rods labeled with biocytin and counted under each

experimental condition were averaged and expressed as the mean ± SEM of

n values. To determine whether, under dark-adapted conditions, time of day

and drug (spiperone or quinpirole) treatment and/or photoreceptor type af-

fected photoreceptor tracer coupling, statistical analyses were performed

using a two-way ANOVA. The first factor was time of day/treatment (i.e., sub-

jective day and day-dark-adapted, subjective night and night-dark-adapted,

subjective day + spiperone, subjective night + quinpirole) and the second fac-

tor was photoreceptor type (i.e., rod or cone). ANOVA of the data presented in

Figure 2A revealed significant time of day/treatment [F(3,66) = 24.39, p < 0.001],

photoreceptor type [F(1,66) = 46.06, p < 0.001], and photoreceptor type 3 time

of day/treatment [F(3,66) = 17.11, p < 0.001] effects. To determine whether,

under light-adapted conditions, time of day and light intensity and/or photore-

ceptor type affected photoreceptor tracer coupling, statistical analyses were

performed using a two-way ANOVA. The first factor was time of day/light inten-

sity (i.e., day-dim light-adapted, night-dim light adapted, day-bright light-

adapted, and night-bright light-adapted), and the second factor was photore-

ceptor type. ANOVA of the Figure 2B data revealed significant time of day/light

intensity [F(3,20) = 135.67, p < 0.001], photoreceptor type [F(1,20) = 75.88, p <

0.001], and photoreceptor type 3 time of day/treatment [F(3,20) = 80.09, p <

0.001] effects. Post hoc analysis was performed using the Tukey test.

Light Intensity-Response Relationships

Light response peak amplitude was normalized and plotted against stimulus

intensity. Data points were fit to a Hill-type equation: V = Vmax 3 [In/(In + Kn)],

where V is the response amplitude, Vmax is the maximum response amplitude,

I is the stimulus intensity, K is the stimulus intensity needed to generate a re-

sponse with half-maximal amplitude, and n is the Hill coefficient. Nonlinear

least-squares regression analysis was performed with n and K as free param-

eters. Results from the least-squares nonlinear regression analysis are given ±

SD. One-way ANOVA of the data in Figures 4A and 4B showed that the stim-

ulus intensity needed to generate a response with half-saturating intensity (K)

varied with the experimental conditions under both dark-adapted [Figure 4A:

F(3,36) = 7.17, p < 0.001] and light-adapted conditions [Figure 4B: F(3,32) =

12.49, p < 0.001]. Differences between the groups were tested using the Tukey

post hoc test.

Cone Light Response Threshold

The response threshold (intensity of light that elicits a 0.5 mV response) deter-

mined at different times of the circadian cycle and of the regular light/dark cy-

cle was averaged and expressed as the mean ± SEM of n values. To determine

whether time of day and/or cycle type affected cone response threshold, sta-

tistical analysis was performed using a two-way ANOVA. The first factor was

time of day (i.e., 0–6, 6–12, 12–18, or 18–24 hr), and the second factor was cy-

cle type (i.e., circadian or 12 hr light/12 hr dark cycle). ANOVA of the Figure 4C

data revealed that cone response threshold was highly dependent on the time

of day [F(3,62) = 59.07, p < 0.001] but not on the cycle type [F(1,62) = 0.0216,
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p = 0.884]. No significant time of day 3 cycle type effect was found [F(3,62) =

0.789, p = 0.505].

Kinetics of Cone Light Responses

Kinetics was defined as previously (Ribelayga and Mangel, 2007). Cone light

response data from dark-adapted and light-adapted experiments were ana-

lyzed separately. Statistical analysis was performed using a two-way

ANOVA. The between-group factor was day, night, subjective day + spiper-

one, or subjective night + quinpirole for the dark-adapted experiments and

day or night for the light-adapted experiments. The intragroup factor was

the stimulus light intensity. However, data analysis was limited to the light in-

tensities for which data were available from all the groups (i.e., dark-adapted

conditions: �6 % log I % �2; light-adapted conditions: �5 % log I % �2).

Under dark-adapted conditions, significant differences between groups

(p < 0.001 for each response measure) and between light intensities (p <

0.001 for each response measure) were detected. No interaction was found

between group and light intensity (p > 0.05 for each response measure).

ANOVA of the data from bright light adaptation experiments showed a signif-

icant effect of light intensity (p < 0.001) except for time-to-peak (p = 0.068).

No interaction was found between time of day and light intensity (p > 0.05 in

each case).

Receptive Field Size Measurements—Electrophysiology

The length constant (l) of the recorded cells was estimated by plotting the nor-

malized response amplitudes against the stimulus radius and fitting the data

with the following equation:

VðrÞ= 1� ð1 + r=lÞeð�r=lÞ

Where V(r) is the normalized amplitude of the response to a spot of light of ra-

dius r, and l is the length constant and free parameter (Lamb and Simon,

1976).

Receptive Field Size Measurements—Cut Loading

Data points were normalized to the maximum fluorescence intensity and fit to

the equation Y = Y0 + Ymax 3 e(�x/l), where Y is the relative fluorescence inten-

sity, Y0 is the background fluorescence, Ymax is the maximal relative fluores-

cence, l is the length constant, and x the distance from the cut. Nonlinear

least-squares regression analysis was performed with Y0, Ymax, and l as

free parameters. Results from the least-squares nonlinear regression analysis

are given ± SD. One-way ANOVA of the data in Figures 7G and 7H showed that

l varied with the experimental conditions [Figure 7G: F(2,11) = 2,120, p < 0.001;

Figure 7H: F(2,11) = 943, p < 0.001]. Differences between the groups were

tested using the Tukey post hoc test.

Spectral Sensitivity

Statistical analysis of cone spectral sensitivity was done using nonlinear least-

squares regression of our experimental data with the published template for

goldfish visual pigments (Govardovskii et al., 2000). Nomograms were gener-

ated from the template with lmax = 516 nm (goldfish rod porphyropsin), 451 nm

(goldfish blue cone pigment, S), 539 nm (goldfish green cone pigment, M), and

608 nm (goldfish red cone pigment, L) (Govardovskii et al., 2000). The modified

nomogram under dark-adapted conditions at night was calculated by combin-

ing the rod and L cone nomograms weighted by their relative difference in sen-

sitivity at lmax.
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